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Introduction.

We consider the moving particle process in Rd which is defined in the
following way. There are two independent sequences (Tk) and (εk) of
random variables.
The variables Tk are non negative and ∀k Tk ≤ Tk+1, while variables

εk form an i.i.d sequence with common distribution concentrated on the
unit sphere Sd−1.
The values εk are interpreted as the directions, and Tk as the moments

of change of directions.
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Introduction.

A particle starts from zero and moves in the direction ε1 up to the
moment T1. It then changes direction to ε2 and moves on within the
time interval T2 − T1, etc. The speed is constant at all sites. The
position of the particle at time t is denoted by X (t).
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Introduction.

Study of the processes of this type has a long history. The first work
dates back probably to Pearson (1905) and continued by Kluyer (1906)
and Rayleigh (1919). Mandelbrot (1982) considered the case where the
increments Tn −Tn−1 form i.i.d. sequence with the common law having a
heavy tail. He also introduced the term "Levy flights" later evolved into
the "Random flights".
To date, a large number of works were accumulated, devoted to the

study of such processes, we mention here only articles of A.Kolesnik
(2009), E. Orsingher and A. De Gregorio (2012, 2015) and E. Orsingher
and R. Garra (2014) which contain an extensive bibliography and where
for different assumptions on (Tk) and (εk) the exact formulas for the
distribution of X (t) were derived.
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Introduction.

Our goals are different.
Firstly, we are interested in the global behavior of the process

X = {X (t), t ∈ R+}, namely, we are looking for conditions under which
the processes {YT , T > 0},

YT (t) =
1

B(T )
X (tT ), t ∈ [0, 1],

weakly converges in C [0, 1] : YT =⇒ Y , BT −→∞, T −→∞.
Secondly, we want to construct diffusion approximations for the process

X (t) and evaluate the accuracy of such approximations.
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Introduction.

From now on we suppose that the points (Tk), Tk ≤ Tk+1, form a
Poisson point process in R+.

It is clear that in the homogeneous case the process X (t) is a
conventional random walk because the spacings Tk+1 − Tk are
independent, and then the limit process is Brownian motion.

In the non homogeneous case the situation is more complicated as these
spacings are not independent. Nevertheless it was possible to distinguish
three modes that determine different types of limiting processes.

For a more precise description of the results it is convenient to assume
that Tk = f (Γk), where f is certain function and (Γk) is a standard
homogeneous Poisson point process on R+.
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Introduction.

If the function f has power growth,

f (t) = tα, α > 1/2,

the behavior of the process is analogous to the uniform case and then in
the limit we obtain a Gaussian process which is a lineally transformed
Brownian motion

Y (t) =

∫ t

0
Kα(s)dW (s),

where W is a process of Brownian motion, for which the covariance
matrix coincides with the covariance matrix of ε1.
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Introduction.

In the case of exponential growth,

f (t) = etβ , β > 0,

the limiting process is piecewise linear with an infinite number of units,
but ∀ε > 0 the number of units in the interval [ε, 1] will be a.s. finite.
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Introduction.

Finally, with the super exponential growth of f , the process
degenerates : its trajectories are linear functions :

Y (t) = εt, t ∈ [0, 1], ε
Law
= ε1.

In the second part the process X (t) is considered as a Markov chain. We
construct diffusion approximations for this process and investigate their
accuracy. The main tool in this part is the parametrix method (K., 2012).
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Results, Th.1, 1).

Remind that we suppose Tk = f (Γk), where (Γk) is a standard
homogeneous Poisson point process on R+. Assume also that Eε1 = 0.
It is more convenient consider at first behavior of processes

Zn(t) = YTn(t),

as for T = Tn the paths of Zn have an integer number of full segments
on the interval [0,1].

Theorem 1

Under previous assumptions
1) If the function f has power growth : f (t) = tα, α > 1/2, we take

B(T ) = T
2α−1

2α .
Then Zn =⇒ Y , where Y is a Gaussian process

Y (t) =
√
2α
∫ t

0
s
α−1
2α dW (s),

and W is a process of Brownian motion, for which the covariance
matrix of W (1) coincides with the covariance matrix of ε1.
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Results, Th.1, 2)

Theorem 1

2) If the function f has exponential growth : f (t) = etβ , β > 0, we
take B(T ) = T .

Then Zn =⇒ Y , where Y is a continuous picewise lineal process
with the vertices at the points (tk ,Y (tk)),

tk = e−βΓk−1 , Γ0 = 0,

Y (tk) =
∞∑
i=k

εk(e−βΓi−1 − e−βΓi ), Y (0) = 0.
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Theorem 1, Th.1, 3).

Theorem 1

3) In super exponential case suppose that f is increasing absolutely
continuous and such that

lim
t→∞

f ′(t)

f (t)
= +∞.

We take B(T ) = T .

Then Tn

Tn+1
→ 0 in probability, and Zn =⇒ Y , where the limiting

process Y degenerates :

Y (t) = ε1t, t ∈ [0, 1].
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Remark 1

Remark
In the case of power growth the limiting process admits the following
representation :

Y (t)
L
= α

√
2

2α− 1
W (t

2α−1
α ),

where, as before, W is a Brownian motion, for which the covariance
matrix of W (1) coincides with the covariance matrix of ε1.
It is clear that we can also express Y in another way :

Y (t)
L
= α

√
2

2α− 1
K

1
2w(t

2α−1
α ),

where w is a standard Browniam motion and K is the covariance matrix
of ε1.
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Remark 2

Remark
In the case of exponential growth it is possible to describe the limiting
process Y in the following way :
We take a p.p.p. T = (tk), tk = e−βΓk−1 , defined on (0, 1], and define a
step process
{Z (t), t ∈ (0, 1]},

Z (t) = εk for t ∈ (tk+1, tk ].

Then

Y (t) =

∫ t

0
Z (s) ds.
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Comments.

Poof of Th.1 (First part). We have

tn,k =
Tk

Tn
=

(
Γk

Γn

)α
, Bn = n

2α−1
2 , Zn(tn,k) =

1
Bn

n∑
1

εi (Γαi −Γαi−1).

1-st step. Compare Zn(·) with Vn(·) where

Vn(tn,k) =
α

Bn

n∑
1

εiγiΓ
α−1
i−1 , γi = Γi − Γi−1,

and show that
‖Zn − Vn‖∞

P→ 0.
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Comments

2-nd step.
Compare Vn(·) with Wn(·) where

Wn(tn,k) =
α

Bn

n∑
1

εiγi (i − 1)α−1,

and show that
‖Wn − Vn‖∞

P→ 0.
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Comments

3-d step.
Show that the process

Un

((
k

n

)α)
=

α

Bn

n∑
1

εiγi (i − 1)α−1,

converges weakly to the process

Y (t) =
√
2α
∫ t

0
s
α−1
2α dW (s).

Show finally that the convergence Wn ⇒ Y follows from the convergence
Un ⇒ Y .
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Results, Th.2.

In the second part we consider a model of random flight which is
equivalent to the study of random broken lines {Xn(t), t ∈ [0, 1]} with
the vertices ( k

n , Xn( k
n )), and such that (h = 1

n )

Xn ((k + 1)h) = Xn(kh) + hb(Xn(kh)) +
√
hξk(X (kh)),

Xn(0) = x0, ξk(Xn(kh)) = ρkσ(Xn(kh))εk , (1)

where {εk} and {ρk} are two independent sequences such that

{εk} are i.i.d. r. v. uniformly distributed on the unit sphere Sd−1,
{ρk} are i.i.d. r. v. having a density, ρk ≥ 0, Eρ2

k = d ,

b : Rd −→ Rd is a bounded measurable function and
σ : Rd −→ Rd × Rd is a bounded measurable matrix function.

VALENTIN KONAKOV RANDOM FLIGHTS: POISSONIAN ENVIRONMENT



Results, Th.2.

Theorem 2

Let X = {X (t), t ∈ [0, 1]} be a solution of stochastic equation

X (t) = x0 +

∫ t

0
b(X (s))ds +

∫ t

0
σ(X (s))dw(s). (2)

Suppose that b and σ are continuous functions satisfying Lipschits
condition

|b(t)− b(s)|+ |σ(t)− σ(s)| ≤ K |t − s|.

Moreover it is supposed that b(x) and 1
det (σ(x)) are bounded.

Then

Xn ⇒ X in C[0, 1].
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Comments

To prove the weak convergence we use the approach of Stroock and
Varadhan (1979). Under our assumptions the diffusion coefficients a and
b have the property that for each x ∈ Rd the martingale problem for a
and b has exactly one solution Px starting from x (that is well posed). It
remains to check the conditions from Stroock and Varadhan (1979)
which imply the weak convergence of our sequence of Markov chains to
this unique solution Px .
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Comments

Our next result is about approximation of transition density. We
consider now more general models given by a triplet
(b(x), σ(x), f (r ; θ)), x ∈ Rd , r ≥ 0, θ ∈ R+, where b(x) is a vector
field, σ(x) is a d × d matrix, a(x) := σσT (x) > δI , δ > 0, and f (r ; θ) is
a radial density depending on a parameter θ controlling the frequency of
changes of directions, namely, the frequency increases when θ decreases.
Suppose X (0) = x0. The vector b(x0) acts shifting a particle from x0 to
x0 + ∆(θ)b(x0), where ∆(θ) = cdθ

2, cd > 0. Several examples of such
functions ∆(θ) for different models will be given below. Define

Ex0(r) := {x :
∣∣∣a−1/2(x0)(x − x0 −∆(θ)b(x0))

∣∣∣2 = r2},

Sdx0(r) := {y : |y − x0 −∆(θ)b(x0)|2 = r2},

The initial direction is defined by a random variable ξ0, the law of ξ0 is
a pushforward of the spherical measure on Sdx0(1) under affine change of
variables

x − x0 −∆(θ)b(x0) = a1/2(x0)(y − x0 −∆(θ)b(x0))
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Comments

Then particle moves along the ray lx0 corresponding to the directional
unit vector

ε0 :=
ξ0 − x0 −∆(θ)b(x0)

|ξ0 − x0 −∆(θ)b(x0)|
,

and changes the direction in (r , r + dr) with probability

|a−1/2(x0)ε0| · f (r
∣∣∣a−1/2(x0)ε0

∣∣∣)dr . (3)

Let ρ0 be a random variable independent on ξ0 and distributed on lx0
with the radial density (3). We consider the point
x1 = x0 + ∆(θ)b(x0) + ρ0ε0. Let (εk , ρk) be independent copies of
(ε0, ρ0). Starting from x1 we repeat the previous construction to obtain
x2 = x1 + ∆(θ)b(x1) + ρ1ε1. After n switching we get a point xn,

xn = xn−1 + ∆(θ)b(xn−1) + ρn−1εn−1.
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Comments

Now we make our main assumption about the radial density :
(A1) The funciton f (r ; θ) is homogenious of degree −1, that is

f (λr ;λθ) = λ−1f (r ; θ), ∀λ 6= 0.

Denote by pE(n, x , y) the transition density after n switching in the
RF-model described above. To obtain the one step transition density
pE(1, x , y) (we write (x , y) instead of (x0, x1)) we use the inverse Fourier
transform, the one-step characteristic function and (A1). After easy
calculations we get

pE(1, x , y) = ∆−d/2(θ)qx

(
y − x −∆(θ)b(x)√

∆(θ)

)
, (4)

where

qx(z) =
2

d−2
2 Γ

(
d
2

)
(2π)d

∫
Rd

cos 〈τ, z〉

∫ ∞
0

J d−2
2

(ρ
∣∣a1/2(x)τ

∣∣)(
ρ
∣∣a1/2(x)τ

∣∣) d−2
2

f (ρ; cd)dρ

 dτ.

(5)
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Example 1

We put ∆(θ) = (d + 1)2θ2 and

f (r ; θ) =
1

Γ(d)
r−1

( r
θ

)d
exp

(
− r

θ

)
.

Using formula 6.623 (2) on page 726 from Gradshtein and Ryzhik (1963),
and the doubling formula for the Gamma function we obtain

pE(1, x , y) = ∆−d/2(θ)qx

(
y − x −∆(θ)b(x)√

∆(θ)

)
,

where

qx(z) =
(d + 1)d/2

2dπ(d−1)/2Γ
(
d+1
2

) ∣∣det a1/2(x)
∣∣e−√d+1|a−1/2(x)z|.

It is easy to check that∫
ziqx(z) = 0,

∫
zizjqx(z)dz = aij(x).
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Example 2

We put ∆(θ) = θ2/2 and

f (r ; θ) = Cd r
−1
( r
θ

)d
exp

(
− r2

θ2

)
,

where Cd = 2(d+1)/2

(d−2)!!
√
π

if d is odd, and Cd = 2
[(d−2)/2]! if d is even. From

formula 6.631 (4) on page 731(Gradshtein and Ryzhik) we obtain

pE(1, x , y) = ∆−d/2(θ)φx

(
y − x −∆(θ)b(x)√

∆(θ)

)
, (6)

where

φx(z) =
1

(2π)d/2
√

det a(x)
exp

(
−1
2
〈
a−1(x)z , z

〉)
.
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Comments

It is easy to see that the transition density (4) corresponds to the one
step transition density in the following Markov chain model

X(k+1)∆(θ) = Xk∆(θ) + ∆ (θ) b(Xk∆(θ)) +
√

∆(θ)ξ(k+1)∆(θ),

where the conditional density (under Xk∆(θ) = x) of the innovations

ξ(k+1)∆(θ) is equal to qx(·). If we put θ = θn =
√

2
n , then ∆ (θn) = 1

n

and we obtain a sequence of Markov chains defined on an equidistant grid

X k+1
n

= X k
n

+
1
n
b(X k

n
) +

1√
n
ξ k+1

n
, X0 = x0. (7)

Note that the triplet (b(x), σ(x), f (r ; θ)), x ∈ Rd , r ≥ 0, θ ∈ R+, of
the Example 2 corresponds to the classical Euler scheme for the
d-dimensional SDE

dX (t) = b(Xt)dt + σ(Xt)dW (t), X (0) = x0. (8)

VALENTIN KONAKOV RANDOM FLIGHTS: POISSONIAN ENVIRONMENT



Theorem 3.

(A2) The function a(x) = σσT (x) is uniformly elliptic.

(A3) The functions b(x) and σ(x) and their derivatives up to the order
six are continuous and bounded uniformly in x . The 6-th derivative is
globally Lipschitz.

Theorem

Under assumptions (A2), (A3) we have the following expansion for the
model with one step transition density (6) : for any positive integer S as
n→∞

sup
x,y∈Rd

(
1 + |y − x |S

)
· |pE(n, x , y)− p(1, x , y)−

− 1
2n

p ⊗
(
L2
∗ − L2) p(1, x , y)| = O(n−3/2), (9)

where

L =
1
2

d∑
i,j=1

aij(x)∂2
xixj +

d∑
i=1

bi (x)∂xi . (10)
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Remark

The operator L∗ in (9) is the same operator as in (10) but with
coefficients "frozen" ay x . Clearly, L = L∗ but, in general, L2 6= L2

∗. The
convolution type binary operation ⊗ is defined for functions f and g in
the following way

(f ⊗ g) (t, x , y) =

∫ t

0
ds

∫
Rd

f (s, x , z)g(t − s, z , y)dz .

Proof. It follows immidiately from Theorem 1 of K. and Mammen (2009).
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