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1 The Problem

We consider the Kolmogorov-type equation

Lu :=

m0∑
i,j=1

∂xi(aij∂xju) +

m0∑
i=1

∂xi(aiu) + cu+
d∑

i,j=1

bijxj∂xiu+ ∂tu = 0

where (t, x) ∈ R×Rd, m0 ≤ d, the matrix B := (bij)1≤i,j≤d has constant real
entries and the coefficients aij = aji, ai, c for 1 ≤ i, j ≤ m0, are bounded,
measurable functions.
The operator L has to be interpreted as a perturbation of

L0u :=
1

2

m0∑
i=1

∂xixiu+
d∑

i,j=1

bijxj∂xiu+ ∂tu
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which we call the principal part of L. If we denote

Y u :=
d∑

i,j=1

bijxj∂xiu+ ∂tu

then, according to Hörmander’s theorem, L0 is hypoelliptic if

rank Lie
{
∂x1, . . . , ∂xm0

, Y
}

(t, x) = d+ 1, for all (t, x) ∈ Rd+1.

It was proved in Lanconelli and Polidoro (1994) that for the operator L0 the
last condition is equivalent to what we assume as a standing assumption.

Assumption 1
The matrix B := (bij)1≤i,j≤d takes the block-form

B =


∗ ∗ · · · ∗ ∗
B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
...

... . . . ...
...

0 0 · · · Bν ∗


where each Bi is a (mi ×mi−1)-matrix of rank mi with

m0 ≥ m1 ≥ · · · ≥ mν ≥ 1,
ν∑
i=0

mi = d,

and the blocks denoted by “∗” are arbitrary.

Moreover, to preserve the sub-elliptic character of the operator L0 we also
require:

Assumption 2
There exists a positive constant µ such that

µ−1|ξ|2 ≤
m0∑
i,j=1

aij(t, x)ξiξj ≤ µ|ξ|2, ξ ∈ Rm0, (t, x) ∈ Rd+1.

Our aim is to obtain a Gaussian upper bound for the fundamental solution
Γ = Γ(t, x;T, y) of L, which is independent of the smoothness of the coeffi-
cients. In fact, the constants appearing in our upper bound will only depend
on the L∞-norms of the coefficients and the matrix B. For this reason we
introduce the following class.
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Notation 1
Let M > 0 and B a d × d matrix satisfying Assumption 1. We denote
by KM,B the class of Kolmogorov operators L that satisfy our assumptions
with constant µ and norms ‖aij‖∞, ‖ai‖∞, ‖c‖∞ smaller than M , for all
i, j = 1, ...,m0.

We are ready to state our main result.

Theorem 3
Let L ∈ KM,B and T0 > 0. If Γ is a fundamental solution of the operator
L, then there exists a positive constant C, only dependent on M , B and T0,
such that

Γ(t, x;T, y) ≤ C

(T − t)Q2
exp

(
− 1

C

∣∣∣D ((T − t)−
1
2

)(
x− e−(T−t)By

)∣∣∣2) ,
for 0 < T − t ≤ T0 and x, y ∈ Rd, with

D(r) := diag(rIm0
, r3Im1

, . . . , r2ν+1Imν
), r > 0,

where Imi
denotes the (mi ×mi)-identity matrix, and

Q := m0 + 3m1 + · · ·+ (2ν + 1)mν.

Remark 1
Theorem 3 is an a priori estimate in the sense that it is derived under con-
ditions that do not guarantee the actual existence of a fundamental solution.
In the case of Hölder continuous coefficients, the existence of a fundamental
solution was proved by Polidoro (1994), for homogeneous Kolmogorov equa-
tions (∗-blocks of B are zero), and by Di Francesco and Pascucci (2005), for
non-homogeneous Kolmogorov equations (the case consider in this talk).

Remark 2
The exponent Q

2 appearing in the estimate is optimal, as it can be easily seen
in the case of constant-coefficient Kolmogorov operators (whose fundamen-
tal solution is explicit). Notice the difference with respect to the uniformly
parabolic case: for instance, in R3, for the heat operator ∂x1x1 + ∂x2x2 + ∂t we
have Q = 2, while for the prototype Kolmogorov operator ∂x1x1 + x1∂x2 + ∂t
we have Q = 4.

Remark 3
The previous theorem generalizes the classical results by Nash (1958), Aron-
son (1967) and Davies (1987), for uniformly parabolic equations, and Pas-
cucci and Polidoro (2003) for Kolmogorov equations with null ∗-blocks in the
matrix B.
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2 Geometric properties of the operator L0

Constant-coefficient Kolmogorov operators are naturally associated to linear
stochastic differential equations: indeed,

L0u =
1

2

m0∑
i=1

∂xixiu+
d∑

i,j=1

bijxj∂xiu+ ∂tu

is the infinitesimal generator of the d-dimensional SDE

dX t,x
T = BX t,x

T dT + σdWT , X t,x
t = x (2.1)

where W is a standard m0-dimensional Brownian motion, x ∈ Rd and σ is
the (d×m0)-matrix

σ =

(
Im0

0

)
.

The solution of (2.1) is the Gaussian process

X t,x
T = e(T−t)Bx−

∫ T

t

e(T−s)BσdWs

whose transition density is

Γ0(t, x;T, y)

=
1√

(2π)d det C(T − t)
exp

{
−1

2
〈C(T − t)−1

(
y − e(T−t)Bx)

)
,
(
y − e(T−t)Bx

)
〉
}

for t < T and x, y ∈ Rd. Here

C(t) =

t∫
0

(
esBσ

) (
esBσ

)∗
ds

is the covariance matrix of X t,x
T .

Remark 4
The assumption on the matrix B (i.e. to be of that specific block-form) is
also equivalent to the fact that C(t) is positive definite for any t > 0.

Operator L0 has some remarkable invariance properties that were first studied
by Lanconelli and Polidoro (1994). Denote by `(τ,ξ), for (τ, ξ) ∈ Rd+1, the
left-translations in Rd+1 defined as

`(τ,ξ)(t, x) := (τ, ξ) ◦ (t, x) :=
(
t+ τ, x+ etBξ

)
.
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Then, L0 is invariant with respect to `ζ in the sense that

L0 (u ◦ `ζ) = (L0u) ◦ `ζ , ζ ∈ Rd+1.

Moreover, let

D(r) := diag(rIm0
, r3Im1

, . . . , r2ν+1Imν
), r > 0,.

Then, L0 is homogeneous with respect to the dilations in Rd+1 defined as

δr(t, x) :=
(
r2t,D(r)x

)
, r > 0,

if and only if all the ∗-blocks of B are null. In that case, we have

L0(u ◦ δr) = r2(L0u) ◦ δr, r > 0.

Since the Jacobian JD(r) equals rQ, the natural number

Q = m0 + 3m1 + · · ·+ (2ν + 1)mν.

is usually called the homogeneous dimension of Rd with respect to (D(r))r>0.

3 Inherited properties of L

It turns out that the invariance properties of the principal part L0 are inher-
ited by L in terms of invariance within the class KM,B. More explicitly, for
the left-translations we have

Fact 1
Let ζ ∈ Rd+1 and L ∈ KM,B. If u is a solution of Lu = 0, then

v := u ◦ `ζ solves L(ζ)v = 0

where L(ζ) is obtained from L by left-translating its coefficients, that is L(ζ) =
L ◦ `ζ. Moreover, operator L(ζ) still belongs to KM,B.

As for dilations, we have to distinguish between homogeneous Kolmogorov
operators (i.e. operators with null ∗-blocks in B) and general Kolmogorov
operators.

Fact 2 (The homogeneous case)
Let λ > 0 and L ∈ KM,B be a homogeneous Kolmogorov operator. If u is a
solution of Lu = 0 then

v := u ◦ δλ solves Lλv = 0

where Lλ is obtained from L by dilating its coefficients, that is Lλ = L ◦ δλ.
Moreover, operator Lλ still belongs to KM,B.
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It turns out that the crucial step to achieve our estimate is to prove it for
t = 0, T = 1 and y = 0, that is

Γ(0, x; 1, 0) ≤ C exp

(
−|x|

2

C

)
, x ∈ Rd,

with C dependent only on M and B. Then, the general estimate for L ∈
KM,B follows from the invariance of the class KM,B with respect to the left-
translations ` and the intrinsic dilations δ.
This upper bound is consistent with the following Gaussian upper bound for
Kolmogorov operators with Hölder continuous coefficients, proved in Polidoro
and Di Francesco and Pascucci (see also Konakov, Menozzi and Molchanov
(2010) and Bally and Kohatsu-Higa (2015)) by means of the classic parametrix
method:

Γ(t, x;T, y) ≤ CΓ0(t, x;T, y), t < T, x ∈ Rd, (3.1)

where C = C(M) and Γ0 is the fundamental solution of L0 with σ =(√
2MIm0

0

)
. Notice that for homogeneous Kolmogorov operators, the con-

stant C in estimate (3.1) is independent of T − t.

In the case of non-homogeneous Kolmogorov operators, our main estimate
is different and slightly less accurate than the Gaussian bound proved in
Pascucci and Polidoro (2003). Indeed, the lack of homogeneity makes the
proof more involved since the scaling argument cannot be used anymore. We
have the following result (see Lanconelli and Polidoro (1994)).

Fact 3 (Non-homogeneous case)
Let λ > 0 and L ∈ KM,B. If u is a solution of Lu = 0 then

v := u ◦ δλ solves Lλv = 0

where

Lλu := div(A(λ)Du) + 〈B(λ)x,Du〉+ ∂tu+ div(a(λ)u) + c(λ)u(t, x),

with

A(λ)(t, x) = A (δλ(t, x)) , a(λ)(t, x) = λa (δλ(t, x)) , c(λ)(t, x) = λ2c (δλ(t, x)) ,
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and B(λ) = λ2DλBD 1
λ
, that is

B(λ) =


λ2B1,1 λ4B1,2 · · · λ2νB1,ν λ2ν+2B1,ν+1

B1 λ2B2,2 · · · λ2ν−2B2,ν λ2νB2,ν+1

0 B2 · · · λ2ν−4B3,ν λ2ν−2B3,ν+1
...

... . . . ...
...

0 0 · · · Bν λ2Bν+1,ν+1

 ,

where Bi,j denotes the ∗-block in the (i, j)-th position of B.

We will show that if L ∈ KM,B, then the fundamental solution Γλ of Lλ

satisfies the main estimate uniformly with respect to λ ∈ [0, 1], that is with
the constant C dependent only on M and B. Intuitively, this is due to the fact
that, on the one hand, the dilations δλ do not affect the blocks B1, . . . , Bν in
B (this guarantees the hypoellipticity of the operator, uniformly with respect
to λ); on the other hand, the new ∗-blocks are bounded functions of λ ∈ [0, 1].

4 Moser’s estimate

The first step in the proof of our main theorem consists in proving the local
boundedness of non-negative weak solutions of Lu = 0. Let us first rewrite

m0∑
i,j=1

∂xi(aij∂xju) +

m0∑
i=1

∂xi(aiu) + cu+
d∑

i,j=1

bijxj∂xiu+ ∂tu

in the compact form

div(ADu) + div(au) + cu+ Y u,

where D = (∂x1, . . . , ∂xd) denotes the gradient in Rd, A := (aij)1≤i,j≤d, a :=
(ai)1≤i≤d with aij = ai ≡ 0 for i > m0 or j > m0 and as before

Y = 〈Bx,D〉+ ∂t, (t, x) ∈ R× Rd.

We recall the definition of weak solution.

Definition 1
We say that u is a weak sub-solution of Lu = 0 in a domain Ω of Rd+1 if

u, ∂x1u, . . . , ∂xm0
u, Y u ∈ L2

loc(Ω)
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and for any non-negative ϕ ∈ C∞0 (Ω) we have∫
Ω

−〈ADu,Dϕ〉 − 〈a,Dϕ〉u+ ϕcu+ ϕY u ≥ 0.

A function u is a weak super-solution if −u is a weak sub-solution. If u is a
weak sub and super-solution, then we say that u is a weak solution.

The following cylinders reflect the geometric properties of the operator L.

Definition 2
We denote

R1 = {(t, x) ∈ R× Rd | |t| < 1, |x| < 1};

moreover, for z0 ∈ Rd+1 and r > 0, we set

Rr(z0) := z0 ◦ δr (R1) = {z ∈ Rd+1 | z = z0 ◦ δr(ζ), ζ ∈ R1}.

In the classical setting, Moser’s approach combines Caccioppoli type esti-
mates with the embedding Sobolev inequality. For Kolmogorov operators
that are not uniformly parabolic, Caccioppoli estimates provide L2

loc-bounds
only for the first m0 derivatives.

Theorem 4 (Caccioppoli type inequality)
Let L ∈ KM,B and u be a non-negative weak sub-solution of Lu = 0 in Rr(z0),
with 0 < % < r ≤ r0 such that r − % < 1. If uq ∈ L2(Rr(z0)) for some q > 1

2,
then Dm0

uq ∈ L2(Rρ(z0)) and there exists a constant C = C(M, ‖B‖) such
that ∫

Rρ(z0)

|Dm0
uq|2 ≤ C

(
q

2q − 1

)2
q

(r − ρ)2

∫
Rr(z0)

|uq|2.

If u is a non-negative weak super-solution, then the previous inequality holds
for q < 1

2.

Proof
Follows the same line of the proof for the uniformly parabolic case. 2

Remark 5
Since the constant C from the inequality above depends only on M and ‖B‖,
the previous estimate holds also for for operator

Lλu := div(A(λ)Du) + 〈B(λ)x,Du〉+ ∂tu+ div(a(λ)u) + c(λ)u

uniformly with respect to λ ∈ [0, 1].

8



The following result follows the original argument proposed in Pascucci and
Polidoro (2004), which consists in proving some ad hoc Sobolev type inequal-
ities for local solutions to Lu = 0.

Theorem 5 (Sobolev type inequality)
Let L ∈ KM,B, λ ∈ [0, 1]. If u is a non-negative weak sub-solution of Lλu = 0
in Rr(z0), then u ∈ L2κ

loc(Rr(z0)) with κ = 1 + 2
Q and we have

‖u‖L2κ(Rρ(z0)) ≤
C

r − ρ
(
‖u‖L2(Rr(z0)) + ‖Dm0

u‖L2(Rr(z0))

)
,

for every 0 < ρ < r ≤ r0, satisfying r − % < 1, with C dependent only on
M,B and r0. The same statement holds for non-negative super-solutions.

Proof

Based on potential estimates obtained in Pascucci and Polidoro (2004) 2

We are now ready to state the local boundedness for non negative weak
solutions of Lu = 0.

Theorem 6
Let L ∈ KM,B, λ ∈ [0, 1] and u be a non-negative weak solution of Lλu = 0
in a domain Ω. Let z0 ∈ Ω and 0 < % < r ≤ r0 be such that r − % < 1
and Rr(z0) ⊆ Ω. Then, for every p > 0 there exists a positive constant
C = C(M, r0, p) such that

sup
R%(z0)

up ≤ C

(r − %)Q+2

∫
Rr(z0)

up.

The previous estimate also holds for every p < 0 such that up ∈ L1(Rr(z0)).

Remark 6
This result slightly extends the Moser’s estimates obtained in Cinti, Pascucci
and Polidoro (2008) where the lower order terms were not included.

Proof The argument is based on the Moser’s iteration method. The
inequality to be iterated, obtained combining the Caccioppoli and Sobolev
type inequalities is

‖uq‖L2κ(Rρ(z0)) ≤
C(M, r0, q)

√
|q|

(r − %)2
‖uq‖L2(Rr(z0)),
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where 0 < ρ < r ≤ r0 with r − ρ < 1, q 6= 1
2 and u is a non-negative

weak solution of Lλu = 0. From the Caccioppoli-type inequality we see that
C(M, r0, q), as a function of q, is bounded at infinity and diverges at q = 1

2 :
this feature is in common with the equation studied in Cinti et al. (2008).
However, the presence of the new factor

√
|q| in the right hand side of that

inequality requires additional care in the application of the Moser’s iterative

procedure. First of all, we fix a sequence of radii ρn =
(

1 − 1
2n

)
ρ + 1

2nr, a

sequence of exponents qn = p
2κ

n and a safety distance, say δ, from 1
2 . The

exponent p is chosen to guarantee that the distance of the resulting exponent
qn from 1

2 is at least δ, for each n ≥ 1. We then iterate the inequality above
to obtain

‖u
p
2‖L∞(Rρ(z0)) ≤ f(r − %)‖u

p
2‖L2(Rr(z0))

where, for some C̃ = C̃(M, r0, δ),

f(r − %) =
∞∏
j=0

(
C̃
√
|p|κ j

2

(%j − %j+1)2

) 1

κj

=
C1(M, r0, p)

(r − %)
Q+2
2

,

This proves the claim for p satisfying |p2k
n− 1

2 | ≥ δ. The previous restriction
is easily relaxed using the monotonicity of the Lp-means. 2

5 The upper bound

We are now going to prove a Gaussian upper bound for the fundamental
solution Γ of L ∈ KM,B. The existence of Γ for Kolmogorov equations with
Hölder continuous coefficients has been proved in Weber (1951), Il’in (1964),
Eidelman et al. (1998) and, in greatest generality, in Polidoro (1994) and Di
Francesco and Pascucci (2005) in the homogeneous and non-homogeneous
cases, respectively.
We begin with an important implication of the Moser’s estimate.

Theorem 7 (Nash upper bound)
Let Γ be a fundamental solution of L ∈ KM,B. Then, there exists a positive
constant C = C(M,T0) such that

Γ(t, x;T, y) ≤ C

(T − t)Q2
, 0 < T − t ≤ T0, x, y ∈ Rd.
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Remark 7
We remark that the previous estimate can be interpreted as a Gaussian upper
bound in a parabolic region. In fact, for fixed (T, y) and λ > 0, let

Pλ(T, y) := {(t, x) | |x− y| ≤ λ
√
T − t}.

Then, the previous inequality obviously implies

Γ(t, x;T, y) ≤ C

(T − t)Q2
e−

|x−y|2
λ(T−t) , (t, x) ∈ Pλ(T, y).

Our proof of a Gaussian upper bound for the fundamental solution is
adapted to the approach of Aronson (1967). The next theorem is a crucial
step in this direction.

Theorem 8
Fix y ∈ Rd, σ > 0 and let u0 ∈ L2(Rd) be such that u0(x) = 0 for |x−y| < σ.
Let L ∈ KM,B and suppose that u is a bounded solution in [η−σ2, η[×Rd with
terminal value u(η, x) = u0(x). Then, there exist positive constants k and C
such that for any τ which satisfies η − 1∧σ2

k ≤ τ ≤ η we have

|u((0, e−ηBy) ◦ (τ, 0))| ≤ C(η − τ)−
Q
4 exp

(
− σ2

C(η − τ)

)
‖u0‖L2(Rd).

The constants k and C depend only on M .

Proof

Consider the case y = 0. We fix s such that 0 ≤ η− s ≤ 1∧σ2 and we define

h(t, x) = − |x|2

2(η − s)− k(η − t)
+ α(η − t), η − η − s

k
≤ t ≤ η, x ∈ Rd,

with α and k being positive constants to be fixed later on. Moreover, for
R ≥ 2, we consider a function γR ∈ C∞0 (Rd, [0, 1]) such that γR(x) ≡ 1 for
|x| ≤ R − 1, γR(x) ≡ 0 for |x| ≥ R with |DγR| bounded by a constant
independent of R. Then, we multiply both sides of the equation by γ2

Re
2hu

and we integrate over [τ, η]× Rd, with η − η−s
k ≤ τ ≤ η, to get∫

Rd

γ2
Re

2hu2|t=τ dx− 2

∫∫
[τ,η]×Rd

e2hu2 (3〈ADm0
h,Dm0

h〉 − Y h− 2〈a,Dm0
h〉+ Λ) dxdt

≤
∫
Rd

γ2
Re

2hu2|t=η dx+ 2

∫∫
[τ,η]×Rd

e2hu2
(

3µ |Dm0
γR|2 +

∣∣Y γ2
R

∣∣− 2〈a,Dm0
γR〉γR

)
dxdt,
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where Λ is a positive constant depending on M .
Next, we let R go to infinity: since u is bounded by assumption and

e2h(t,x) ≤ e−
|x|2
η−s+2α(η−s),

the last integral tends to zero and we get∫
Rd

e2hu2|t=τ dx− 2

∫∫
[τ,η]×Rd

e2hu2 (3〈ADm0
h,Dm0

h〉 − Y h− 2〈a,Dm0
h〉+ Λ) dxdt

≤
∫
Rd

e2hu2|t=η dx.

Then, by a suitable choice of k and α, only dependent on M,B, we have

3〈ADm0
h,Dm0

h〉−Y h− 2〈a,Dm0
h〉+ Λ ≤ 0, η− η − s

k
≤ t ≤ η, x ∈ Rd.

Hence, we derive the inequalities

max
t∈ ]η−η−sk ,η[

∫
∣∣∣D( 2

√
k√

η−s

)
x
∣∣∣≤1

e2h(t,x)u2(t, x)dx ≤ max
t∈ ]η−η−sk ,η[

∫
Rd

e2h(t,x)u2(t, x)dx

≤
∫
|x|≥σ

e2h(η,x)u2
0(x)dx.

Now we notice that, by definition, for every t ∈ ]η − η−s
k , η] we have

2h(t, x) ≥ − 2|x|2

η − s

= −
2
∣∣D(δ)D(δ−1)x

∣∣2
η − s

≥ −2 ‖D(δ)‖2

η − s

≥ − 2δ2

η − s
= − 1

2k
.

On the other hand, if |x| ≥ σ, we have

−2h(η, x) =
2|x|2

2(η − s)
≥ σ2

η − s
.
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Using the previous estimates, we get

max
t∈]η−η−sk ,η[

∫
∣∣∣D( 2

√
k√

η−s

)
x
∣∣∣≤1

u2(t, x)dx ≤ e
1
2k exp

(
− σ2

η − s

)
‖u0‖2

L2(Rd).

Finally, we rely on Moser’s estimate in order to get the desired inequality.
We let τ = η − η−s

k and we observe that τ ∈ [η − 1
k , η] and η − s = k(η − τ):

thus we have

|u(τ, 0)|2 ≤ sup
R+√

η−s
4
√
k

(τ,0)

|u|2

≤ C

(η − s)Q+2
2

∫∫
R+√

η−s
2
√
k

(τ,0)

u2(t, x)dxdt

=
C

(η − s)Q+2
2

τ+η−s
4k∫

τ

∫
∣∣∣D( 2

√
k√

η−s

)
x
∣∣∣≤1

u2(t, x)dxdt

≤ C

(η − s)Q2
exp

(
− σ2

C(η − s)

)
‖u0‖2

L2(Rd)

=
C

k
Q
2 (η − τ)

Q
2

exp

(
− σ2

Ck(η − τ)

)
‖u0‖2

L2(Rd),

where the constant C = C(M,k). This yields the claim in the case y = 0. 2

The following corollary is a simple consequence of the previous theorem.

Corollary 1
There exists two positive constants k and C, that depend only on M , such
that for every σ > 0 and η ∈ R, we have∫
|ξ−e(η−t)Bx|≥σ

Γ2(t, x; η, ξ)dξ ≤ Ce−
σ2

C(η−t)

(η − t)Q2
, (t, x) ∈

[
η − 1 ∧ σ2

k
, η
[
× Rd,

and ∫
|x−e(t−η)Bξ|≥σ

Γ2(t, x; η, ξ)dx ≤ Ce−
σ2

C(η−t)

(η − t)Q2
, (t, x) ∈

[
η − 1 ∧ σ2

k
, η
[
× Rd.
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Proof
First of all we observe that∫

|ξ−e(η−t)Bx|≥σ
Γ2(t, x; η, ξ)dξ =

∫
|ξ−y|≥σ

Γ2
(
t, e(t−η)By; η, ξ

)
dξ

=

∫
|ξ−y|≥σ

Γ2
(
(0, e−ηBy) ◦ (t, 0); η, ξ

)
dξ.

Now, the function

u(s, w) :=

∫
|ξ−y|≥σ

Γ(s, w; η, ξ)Γ((0, e−ηBy) ◦ (t, 0); η, ξ)dξ,

is a non-negative solution to our Kolmogorov equation for s < η, with termi-
nal condition

u(η, w) =

{
0 if |w − y| < σ,

Γ((0, e−ηBy) ◦ (t, 0); η, w) if |w − y| ≥ σ.

Setting (s, w) = (0, e−ηBy) ◦ (t, 0), we infer∫
|ξ−y|≥σ

Γ2
(
(0, e−ηBy) ◦ (t, 0); η, ξ

)
dξ = u((0, e−ηBy) ◦ (t, 0))

≤ Ce−
σ2

C(η−t)

(η − t)Q4
‖Γ
(
(0, e−ηBy) ◦ (t, 0), η, ·

)
‖L2(Rd).

Then, the thesis follows directly from the corollary of Nash inequality. 2

We are now in position to prove our main result.

Theorem 9
Let L ∈ KM,B and T0 > 0. If Γ is a fundamental solution of the operator
L, then there exists a positive constant C, only dependent on M , B and T0,
such that

Γ(t, x;T, y) ≤ C

(T − t)Q2
exp

(
− 1

C

∣∣∣D ((T − t)−
1
2

)(
x− e−(T−t)By

)∣∣∣2) ,
for 0 < T − t ≤ T0 and x, y ∈ Rd.
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Proof

Step 1. We first prove the thesis for y = 0 and T − t = 1
k , with k as in the

previous theorem (Aronson). We fix x ∈ Rd and set

σ(x) =
|x|

2‖eT−t2 B‖
.

If σ(x) ≤ 1, that is |x| ≤ 2‖eT−t2 B‖, then the thesis is a direct consequence of
Nash inequality and the fact that, by assumption, T − t = 1

k is fixed with k
dependent only upon M .
On the other hand, if σ(x) ≥ 1, by the Chapman-Kolmogorov identity and
putting η = T − T−t

2 , we have

Γ(t, x;T, 0) =

∫
Rd

Γ(t, x; η, ξ)Γ(η, ξ;T, 0)dξ = J1 + J2,

where

J1 :=

∫
∣∣ξ−eT−t2 Bx

∣∣≥σ(x)

Γ(t, x; η, ξ)Γ(η, ξ;T, 0)dξ,

J2 :=

∫
∣∣ξ−eT−t2 Bx

∣∣<σ(x)

Γ(t, x; η, ξ)Γ(η, ξ;T, 0)dξ.

By the Cauchy-Schwarz inequality, we have

(J1)
2 ≤

∫
∣∣ξ−eT−t2 Bx

∣∣≥σ(x)

Γ2(t, x; η, ξ)dξ

∫
∣∣ξ−eT−t2 Bx

∣∣≥σ(x)

Γ2(η, ξ;T, 0)dξ

≤ Ce−
σ2(x)
C(T−t)

(T − t)Q

= CkQ exp

(
− k|x|2

4C‖e 1
2kB‖2

)
.

In order to estimate J2, we first note that if
∣∣ξ−eT−t2 Bx

∣∣ < σ(x) then, recalling
also the definition of σ(x), we have

|ξ| ≥
∣∣e−T−t2 x

∣∣− ∣∣ξ − e−T−t2 x
∣∣ ≥ |x|
‖eT−t2 B‖

− σ(x) = σ(x).
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Thus, from the previous estimate and using again the Cauchy-Schwarz in-
equality, we have

(J2)
2 ≤

∫
|ξ|≥σ(x)

Γ2(η, ξ;T, 0)dξ

∫
|ξ|≥σ(x)

Γ2(t, x; η, ξ)dξ

≤ Ce−
σ2(x)
C(T−t)

(T − t)Q2

∫
Rd

Γ2(t, x; η, ξ)dξ

≤ C

(T − t)Q
e−

σ2(x)
C(T−t)

= CkQ exp

(
− k|x|2

4C‖e 1
2kB‖2

)
.

This completes the proof of the case σ(x) ≥ 1. In conclusion, we have proved
the desired estimate for T − t = 1

k , that is

Γ(t, x;T, 0) ≤ Ce−
|x|2
C , T − t =

1

k
, x ∈ Rd,

with the constant C only dependent on M and B. Actually, the same esti-
mate holds also for the fundamental solution Γλ of Lλ, with C independent
of λ ∈ [0, 1]: in fact, all the results derive from the Moser’s estimate which
is uniform in λ ∈ [0, 1].

Step 2. We use a scaling argument to generalize the last estimate to the
case 0 < T − t ≤ 1

k ; precisely, we prove that

Γ(t, x;T, 0) ≤ C

(T − t)Q2
e−

|x|2
C(T−t) , 0 < T − t ≤ 1

k
, x ∈ Rd.

For λ ∈ [0, 1], we set

Γλ(t, x;T, 0) = λQΓ(δλ(t, x); δλ(T, 0))

and observe that, since the Jacobian JD(λ) equals λQ, we have that Γλ is a
fundamental solution of the operator L(λ).
Now, fix t such that 0 < T − t ≤ 1

k and set λ = k(T − t). Then we have

Γ(t, x;T, 0) = λ−
Q
2 Γ(
√
λ)

(
t

λ
,D
(

1√
λ

)
x;
T

λ
, 0

)
≤
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(by (5))

≤ Cλ−
Q
2 e−

1
C |D( 1√

λ
)x|2

which proves the claim.

Step 3. We now remove the condition y = 0. Let z = (0, e−TBy) and Γ(z) be
the fundamental solution of the operator L(z) := L ◦ `z. Since L(z) ∈ KM,B,
we have that Γ(z) satisfies the last estimate and hence we obtain

Γ(t, x;T, y) = Γ(z)(z−1 ◦ (t, x);T, 0)

= Γ(z)(t, x− e−(T−t)By;T, 0)

≤ C

(T − t)Q2
exp

(
− 1

C

∣∣∣∣D( 1√
T − t

)(
x− e−(T−t)By

)∣∣∣∣2
)
,

for 0 < T − t ≤ 1
k and x, y ∈ Rd.

Step 4. In the last step we relax the restriction on the length of the time
interval. We first suppose that 0 < T − t ≤ 2

k and set τ = T−t
2 . By the

Chapman-Kolmogorov identity we have

Γ(t, x;T, y) =

∫
Rd

Γ(t, x; t+ τ, ξ)Γ(t+ τ, ξ;T, y)dξ

≤ C

τQ

∫
Rd
e−

1
C |D( 1√

τ )(x−e
−τBξ)|2e−

1
C |D( 1√

τ )(ξ−e
−τBy)|2dξ

≤ C

τQ

∫
Rd
e−

1
C |D( 1√

τ )(x−e
−τBξ)|2e−

1
C |D( 1√

τ )(e
−τBξ−e−(T−t)By)|2dξ

≤ C

(T − t)Q2
e−

1
C |D( 1√

T−t)(x−e
−(T−t)By)|2.

Iterating this procedure we can extend the estimate to any bounded time
interval and this concludes the proof. 2
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