
Efficient Method forBarrier Option EvaluationApril 10 - 11, 2017

ModenaC. Guardasoni, S. SanfeliciUniversity of Parma, Italy



Outline Black-Scholes model problemFoundationsNumerical examplesStraightforward application to hedgingExtension to Heston modelSemi-Analytical method for the pricing of Barrier Options, under general dynamics.In practice…the extension of Boundary Element Method, introduced in the Engineering field in the 1970s, to barrier option pricinghere in a user-friendly wayRequirement: Knowledge of the fundamental solution (transition probability density function)related to the differential model problem associated to the vanilla optionat least in an approximated form 



The financial model problem: European barrier option pricingA European option is a contractwhich gives the buyerthe right to sell (put option) or to buy (call option) an underlying assetat a specified strike priceon a specified date (expiry) TAt maturity T, for Put Option with exercise (strike) price E:if S ≤ E, the holder can buy the underlying asset at S and exercisethe right to sell it at E, thus the option’s value is E - S.On the contrary, if S > E, why sell something at a price E that islower than its market price? Thus, if S > E, the option is notexercised and the holder receives zero.PAYOFF



The financial model problem: European barrier option pricinga knock-out barrier option is an option whose price extinguishes when the underlying assetbreaches a pre-set barrier levelFor clarity, I will illustrate here only the case of aEuropean put up-and-out optionwhose price extinguishes when the underlying asset breaches a pre-set upper barrier levelbut the method is analogously applicable also to call option and other combinations ofbarriers too.



The mathematical model problem: European vanilla optionUnder the simple Black-Scholes paradigm, still very common in usewith time dependent parameterswith boundary conditions on the assetwith final condition (payoff)European vanilla option differential model problemnormal cumulative distribution;For this problem the analytical solution is known

[F. Black and M. Scholes, 1973]



The mathematical model problem: European vanilla optionfollowing the PDE theory, the analytical solution can be written as the discounted expected value of the final payoff  
[A. Friedman, 1964-1975-1976]

where is the payoff andis the fundamental solution of the forward PDE



The mathematical model problem: European put up-and-out optionPerforming these classical changes of variablesand definingwith boundary conditions on the assetwith initial condition European put up-and-out option differential model problemIs there a closed form solution? 



Numerical methodsMonte Carlo methods: very simple and flexible, but also very slow toconvergeBinomial/trinomial lattices: relatively easy to implement, but notparticularly efficientFinite difference schemes: easy to implement. However, standard high-orderimplementations fail to achieve true high-order accuracy, due to the non-smoothness of the options’ payoffsFinite element methods: very accurate and fast and capable of handlingdiscontinuous solutions; However, they are quite difficult to implement,especially if a high-degree polynomial basis is employed and have sometroubles particularly in unbounded domains (as Finite Difference methods)



SABO FoundationsAnalytical Integral Representation of PDE solutionBoundary Integral EquationNumerical Resolution of the Boundary Integral Equation by Collocation MethodNumerical approximation of the option priceSemi-Analytical method for the pricing of Barrier Options, under general dynamics.based on Boundary Element MethodFoundations:



Integral Representation Formula of the PDE Solutionfollowing PDE theory…for each  solves the related transition probability density (Green fundamental solution)PDEMultiplying the PDE by integrating by parts (Green’s Theorem) and using initial/boundary conditions 



Integral Representation Formula of the PDE Solutionfollowing PDE theory…the related transition probability density (Green fundamental solution)PDEMultiplying the PDE by integrating by parts (Green’s Theorem) and using initial/boundary conditions for each  solves 



Integral Representation Formula of the PDE Solutionfollowing PDE theory…the related transition probability density (Green fundamental solution)PDEMultiplying the PDE by integrating by parts (Green’s Theorem) and using initial/boundary conditions for each  solves RF



Boundary Integral Equationanalytical INTEGRAL REPRESENTATION FORMULARF unknown density



Boundary Integral Equationanalytical INTEGRAL REPRESENTATION FORMULARF unknown densitysolve the equation… numericallybut on the boundary, letting BOUNDARY INTEGRAL EQUATIONBIE



Boundary Integral Equationanalytical INTEGRAL REPRESENTATION FORMULARF unknown densitysolve the equation… numericallybut on the boundary, letting BOUNDARY INTEGRAL EQUATIONBIE



Boundary Integral Equationanalytical INTEGRAL REPRESENTATION FORMULARF unknown densitysolve the equation… numericallybut on the boundary, letting BOUNDARY INTEGRAL EQUATIONBIENote!: whenthe method reduces to the evaluation of the payoff expected value



Numerical Resolution of the Boundary Integral Equation
• uniform decomposition of the time interval with time step  
• approximation of the BIE unknownwith for
• evaluation of BIE at the collocation nodes:by COLLOCATION METHOD:BIE
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Numerical Resolution of the Boundary Integral Equation
• uniform decomposition of the time interval with time step  
• approximation of the BIE unknownwith for
• evaluation of BIE at the collocation nodes:by COLLOCATION METHOD:



Numerical Resolution of the Boundary Integral Equationas the Green’s function is defined for … here in a user-friendly way:numerical integration is simply performed by adaptive quadrature functions of Matlab:
• quad

• and quadgk for weak singularity in matrix diagonal entries



Numerical Resolution of the Boundary Integral Equationas the Green’s function is defined for N.B.:   if then



Numerical Resolution of the Boundary Integral Equationas the Green’s function is defined for 



Numerical Approximation of the option priceanalytical INTEGRAL REPRESENTATION FORMULARF unknown density



Numerical Approximation of the option priceapproximation of  INTEGRAL REPRESENTATION FORMULARF approximation



Hedgingsolve the equation… numericallyBOUNDARY INTEGRAL EQUATIONBIE without computing the primary unknownThis numerical strategy is very useful and efficient also for hedging that needs computing Greeksbecause it is sufficient to evaluate the derivative of the RF



Numerical Example: test with constant parameters
[L.V. Ballestra – G. Pacelli, 2014]

closed-form solutionclosed-form solution [J.C. Hull, 2011]



Numerical Example: test with constant parameters
Δ x Max Abs Err Max Rel Err CPU time

0.1 3.2 10-3 4.5 10+0 1.6 10-2 s

0.05 9.2 10-4 1.2 10+0 1.6 10-2 s

0.025 2.5 10-4 9.6 10-2 1.1 10-1 s

0.0125 6.6 10-5 2.5 10-2 2.3 10+0 s

0.00625 1.4 10-5 5.9 10-3 5.8 10+1 s

0.003125 3.6 10-6 1.6 10-3 1.9 10+3 s

FINITE DIFFERENCES

(implicit in time and centered in space) SABO

Δ t Max Abs Err Max Rel Err CPU time

0.1 2.7 10-6 5.6 10-2 7.0 10-1 s

0.05 7.2 10-7 1.5 10-2 1.5 10+0 s

0.025 1.8 10-7 3.8 10-3 2.7 10+0 s

0.0125 4.9 10-8 1.0 10-3 5.5 10+0 s

0.00625 1.6 10-8 3.4 10-4 1.1 10+1 s

0.003125 4.9 10-9 9.8 10-5 2.3 10+1 s

[C. Guardasoni - S. Sanfelici, A boundary element approach to barrier option pricing in Black–Scholes framework, 
International Journal of Computer Mathematics, 2016]

[L.V. Ballestra – G. Pacelli, 2014]



Numerical Example: test with constant parameters
Δ x S*=1.9 S*=1

0.1 -1.330647 10-3 -3.068228 10-1

0.05 -1.259514 10-3 -3.015779 10-1

0.025 -1.242075 10-3 -3.002400 10-1

0.0125 -1.237736 10-3 -2.999038 10-1

0.00625 -1.236653 10-3 -2.998197 10-1

0.003125 -1.236382 10-3 -2.997986 10-1

approximation by
2nd order CENTERED FINITE DIFFERENCE

and closed formula option values SABON.B.:  in the case of constant parameters, we compare results with the closed formula for the greek.Δ t S*=1.9 S*=1

0.1 -1.217824 10-3 -2.997916 10-1

0.05 -1.232680 10-3 -2.997916 10-1

0.025 -1.235895 10-3 -2.997916 10-1

0.0125 -1.236180 10-3 -2.997916 10-1

0.00625 -1.236224 10-3 -2.997916 10-1

0.003125 -1.236268 10-3 -2.997916 10-1



Numerical Example: test with constant parameters
FINITE DIFFERENCES

(implicit in time and centered in space)

SABO

[C. Guardasoni - S. Sanfelici, A boundary element approach to barrier option pricing in Black–Scholes framework, 
International Journal of Computer Mathematics, 2016]

Max Abs Err Max Rel Err CPU time

0.1 2.6 10-1 3.3 10+0 1.6 10-2 s

0.05 8.6 10-2 1.0 10+0 1.6 10-2 s

0.025 3.1 10-4 8.1 10-3 1.3 10-1 s

0.0125 8.1 10-4 2.0 10-3 2.4 10+0 s

0.00625 2.0 10-4 4.9 10-4 6.1 10+1 s

Max Abs Err Max Rel Err CPU time

0.1 7.4 10-4 9.6 10-3 7.8 10-1 s

0.05 2.0 10-4 2.6 10-3 1.4 10+0 s

0.025 5.2 10-5 6.8 10-4 2.5 10+0 s

0.0125 1.5 10-5 1.9 10-4 4.9 10+0 s

0.00625 5.3 10-6 6.4 10-5 9.7 10+0 s

Max Abs Err Max Rel Err CPU time

k=1 5.0 10-2 5.7 10-1 5.1 10+0 s

k=2 3.4 10-2 4.4 10-1 2.7 10+1 s

k=3 2.7 10-2 3.2 10-1 7.2 10+1 s

MONTE CARLO



Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters

(with Matlab codes), submitted to CAIM]

piecewise constant volatility



Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters

(with Matlab codes), submitted to CAIM]

piecewise constant volatility



Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

SABO

n CPU time

4 3.67754 4.0 10-0

5 3.68136 1.0 10+1

6 3.68235 3.4 10+1

7 3.68264 1.2 10+2

[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters

(with Matlab codes), submitted to CAIM]

time-continuous volatility



Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters

(with Matlab codes), submitted to CAIM]



Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

[C. Guardasoni, … CAIM]



Observations
Advantages :

• implicit satisfaction of asset infinity boundary conditions

• avoidance of discretization of asset- domain (dimensional reduction)

• high precision and stability

• direct evaluation of derivated functions (greeks)

Costs are due to: 

• discretization in time

• numerical quadrature

Needs : 

• Green fundamental solution in a closed or approximated form



if the volatility is considered as a stochastic process the problem to evaluate aDOWN-and-OUT Call Option reduces to the following partial differential problemApplication to Heston model       [S.L. Heston (1993)]



if the volatility is considered as a stochastic process the problem to evaluate aDOWN-and-OUT Call Option reduces to the following partial differential problemfinal condition (payoff)with E exercise priceboundary conditions [E. Miglio-C. Sgarra (2011)] on the asseton the varianceApplication to Heston model       [S.L. Heston (1993)]



Finite Differences

Finite Elements Monte CarloShortcomings
• evaluation of the option over a wide subset of asset and variance values
• approximation of boundary conditions due to the truncation of the domain Shortcoming

• slow convergenceNO ANALYTICAL SOLUTIONNO ANALYTICAL SOLUTION

Numerical methods
representation formularepresentation formula [C.Guardasoni, S.Sanfelici (2016)]

Analitical solution only for Vanilla option [P.Carr, D.Madan (1999)]



is the joint transition probability density (or fundamental solution) that expresses the probability to move from at time to at time Fundamental solution
[W. Feller (1951)] 

[M. Broadie, O. Kaya (2006)] 

[C. Guardasoni, S. Sanfelici (SIAM 2016)] 



• approximation of the BIE unknownwith for• uniform decomposition of the time interval with time step  
• evaluation of BIE at the collocation nodes:• uniform decomposition of the variance interval with step  Attention!:  the fundamental solution in this framework is known throughout a numerical inverse Fourier transformNumerical resolution of BIE [C. Guardasoni, S. Sanfelici (SIAM 2016)] 



• has an upper triangular Toeplitz structure 
• numerical quadrature rule for evaluation of inverse Fourier transform: Matlab adaptive quadrature
• numerical quadrature rule for evaluation of integrals: Gauss-Legendre quadrature rulesNumerical resolution of BIE [C. Guardasoni, S. Sanfelici (SIAM 2016)] 



SABO

CPU time

3 50.96 2∙10+2 s
6 50.98 9∙10+2 s
9 51.02 2∙10+3 s

12 51.01 2∙10+4 s
15 51.01 4∙10+4 s

MONTE CARLO51.49 [50.95 , 52.02] 4∙10-1 51.24 [51.18 , 51.29] 4∙10+1 51.25 [51.25 , 51.26] 4∙10+351.24 [50.71 , 51.78] 6∙10-1 51.19 [51.14 , 51.25] 6∙10+1 51.19 [51.18 , 51.19] 7∙10+351.33 [50.79 , 51.88] 1∙10+0 51.16 [51.10 , 51.21] 1∙10+2 51.14 [51.13 , 51.15] 1∙10+451.35 [50.80 , 51.89] 2∙10+0 51.13 [51.08 , 51.18] 2∙10+2 51.11 [51.10 , 51.11] 2∙10+451.41 [50.88 , 51.95] 4∙10+0 51.11 [51.05 , 51.16] 3∙10+2 51.09 [51.08,51.09] 5∙10+450.97 [50.42 , 51.52] 8∙10+0 51.08 [51.02 , 51.13] 1∙10+3 51.07 [51.06,51.07] 7∙10+4ti
m
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z
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L.Feng-V.Linetsky (2008)

Numerical example: Heston model



SABO

3 8.04
6 8.06
9 8.31

12 8.29
15 8.30

MONTE CARLO9.86 [9.51,10.21] 4∙10-1 9.72 [9.69,9.76] 4∙10+1 9.74 [9.73,9.74] 4∙10+39.22 [8.88,9.57] 7∙10-1 9.33 [9.30,9.37] 7∙10+1 9.33 [9.32,9.33] 6∙10+38.99 [8.64,9.33] 1∙10+0 9.04 [9.00,9.07] 1∙10+2 9.03 [9.03,9.04] 1∙10+48.81 [8.46,9.15] 2∙10+0 8.82 [8.79,8.86] 2∙10+2 8.83 [8.83, 8.83] 2∙10+48.54 [8.20,8.88] 4∙10+0 8.68 [8.65,8.71] 4∙10+2 8.68 [ 8.68,  8.68] 4∙10+48.58 [8.54,8.61] 8∙10+28.53 [8.49,8.56] 2∙10+38.50 [8.46,8.53] 3∙10+38.43 [8.40,8.47] 7∙10+38.39 [8.36,8.43] 1∙10+4ti
m

e
 d

is
c
re
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z
a
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o
n

sampling

Numerical example: Heston model
CPU time



Numerical example: Heston model



ReferencesPerspectiveExtension to Asian barrier options with geometric mean… with arithmetic meanSemi-Analytical method for the pricing of Barrier Options:A boundary element approach to barrier option pricing in Black–Scholes frameworkInternational Journal of Computer Mathematics, 2016Fast numerical pricing of barrier options under stochastic volatility and jumpsSIAM Journal on Applied Mathematics, 2016Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes)submitted to CAIM
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