UNIMORE
UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Efficient Method for Barrier Option Evaluation

C. Guardasoni, S. Sanfelici University of Parma, Italy

Outline

```
Semi-Analytical method for the pricing of Barrier Options, under general dynamics.
```

In practice...
the extension of Boundary Element Method, introduced in the Engineering field in the 1970s, to barrier option pricing
here in a user-friendly way

Requirement:
Knowledge of the fundamental solution (transition probability density function) related to the differential model problem associated to the vanilla option at least in an approximated form

- Black-Scholes model problem
- Foundations
- Numerical examples
- Straightforward application to hedging
- Extension to Heston model

The financial model problem: European barrier option pricing

```
A European option V(S,t) is a contract
which gives the buyer
the right to sell (put option) or to buy (call option) an underlying asset S
at a specified strike price E
on a specified date (expiry)T
```

At maturity T, for Put Option with exercise (strike) price E :
if $S \leq E$, the holder can buy the underlying asset at S and exercise the right to sell it at E, thus the option's value is $E-S$.
On the contrary, if $S>E$, why sell something at a price E that is lower than its market price? Thus, if $S>E$, the option is not exercised and the holder receives zero.

The financial model problem: European barrier option pricing
a knock-out barrier option is an option whose price extinguishes when the underlying asset breaches a pre-set barrier level

For clarity, I will illustrate here only the case of a

European put up-and-out option
whose price extinguishes when the underlying asset breaches a pre-set upper barrier level
but the method is analogously applicable also to call option and other combinations of barriers too.

The mathematical model problem: European vanilla option

Under the simple Black-Scholes paradigm, still very common in use with time dependent parameters $\sigma(t), r(t), d(t)$

European vanilla option differential model problem

- $V(x, t)$ option price $\quad x=\log (S) \in(-\infty,+\infty), t \in[0, T)$

$$
\frac{\partial V}{\partial t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} V}{\partial x^{2}}+\left(r-\frac{\sigma^{2}}{2}-d\right) \frac{\partial V}{\partial x}-r V=0
$$

- with final condition (payoff)

$$
V(x, T)=\max \left(E-e^{x}, 0\right) \quad x \in(-\infty,+\infty)
$$

$S=$ underlying asset value
$r=$ interest rate
$d=$ dividend yield
$\sigma=$ volatility
$T=$ expiry
$E=$ exercise price

- with boundary conditions on the asset

$$
\lim _{x \rightarrow-\infty} V(x, t)=E e^{-\int_{t}^{T} r d \tau} \quad \lim _{x \rightarrow+\infty} V(x, t)=0 \quad t \in[0, T)
$$

For this problem the analytical solution is known

$$
\begin{gathered}
N[q]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{q} e^{-y^{2} / 2} d y \text { normal cumulative distribution; } q=-\frac{\log \left(e^{x} / E\right)+\int_{t}^{T}\left(r-\delta+\sigma^{2} / 2\right) d \tau}{\left(\int_{t}^{T} \sigma^{2} d \tau\right)^{1 / 2}} \\
V(x, t)=E e^{-\int_{t}^{T} r d \tau} N\left[q+\left(\int_{t}^{T} \sigma^{2} d \tau\right)^{1 / 2}\right]-e^{x-\int_{t}^{T} d d \tau} N[q]
\end{gathered}
$$

The mathematical model problem: European vanilla option

following the PDE theory,
the analytical solution can be written as the discounted expected value of the final payoff

$$
V(x, t)=e^{-\int_{t}^{T} r d \tau} \int_{-\infty}^{+\infty} V(y, T) G(y, T ; x, t) d y
$$

where $V(y, T)$ is the payoff and
$G(y, \tau ; x, t)$ is the fundamental solution of the forward PDE
$\left\{\begin{array}{l}-\frac{\partial G}{\partial \tau}+\frac{\sigma^{2}}{2} \frac{\partial^{2} G}{\partial y^{2}}-\left(r-\frac{\sigma^{2}}{2}-\delta\right) \frac{\partial G}{\partial y}-r G=0 \quad \tau>t \\ G(y, t, x, t)=\delta(x, y)\end{array}\right.$

The mathematical model problem: European put up-and-out option

$$
S \in\left[0, S_{u}\right] \text { and } t \in[0, T]
$$

Performing these classical changes of variables

$$
V(S, t)=u(S, t) e^{-\int_{t}^{T} r\left(t^{\prime}\right) d t^{\prime}} \quad S=e^{x} \quad \tau=T-t
$$

and defining $\quad r(t)=r(T-\tau)=: \bar{r}(\tau), \quad \sigma(t)=\sigma(T-\tau)=: \bar{\sigma}(\tau), \quad$ and $\quad d(t)=d(T-\tau)=: \bar{d}(\tau)$

European put up-and-out option differential model problem

- $\frac{\partial u}{\partial \tau}-\frac{\bar{\sigma}^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}-\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right) \frac{\partial u}{\partial x}=0 \quad x \in \Omega=(-\infty, U), \tau \in(0, T]$
- with initial condition

$$
u(x, 0)=\max \left(E-e^{x}, 0\right)=: u_{0}(x) \quad x \in \Omega
$$

- with boundary conditions on the asset
$S=$ underlying asset value
$\bar{r}=$ interest rate
$\bar{d}=$ dividend yield
$\bar{\sigma}=$ volatility
$T=$ expiry
$E=$ exercise price
$U=\log$ (upper barrier)
$\lim _{x \rightarrow-\infty} u(x, \tau)=E \quad \mu(U, \tau)=0 \quad \tau \in[0, T]$

Is there a closed form solution?

Numerical methods

- Monte Carlo methods: very simple and flexible, but also very slow to converge
- Binomial/trinomial lattices: relatively easy to implement, but not particularly efficient
- Finite difference schemes: easy to implement. However, standard high-order implementations fail to achieve true high-order accuracy, due to the nonsmoothness of the options' payoffs
- Finite element methods: very accurate and fast and capable of handling discontinuous solutions; However, they are quite difficult to implement, especially if a high-degree polynomial basis is employed and have some troubles particularly in unbounded domains (as Finite Difference methods)

SABO Foundations

Semi-Analytical method for the pricing of Barrier Options, under general dynamics. based on Boundary Element Method

Foundations:

- Analytical Integral Representation of PDE solution
- Boundary Integral Equation
- Numerical Resolution of the Boundary Integral Equation by Collocation Method
- Numerical approximation of the option price

Integral Representation Formula of the PDE Solution

following PDE theory...
PDE

$$
\frac{\partial u}{\partial \tau}-\frac{\bar{\sigma}^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}-\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right) \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \tau}(x, \tau)-\mathcal{L}[u](x, \tau)=0
$$

$$
x \in \Omega=(-\infty, U), \tau \in(0, T]
$$

the related transition probability density (Green fundamental solution)

$$
G(y, s, x, \tau)=\frac{1}{\sqrt{2 \pi \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}} \exp \left\{-\frac{\left[y-x-\int_{s}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{2 \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}\right\}, \quad \tau>s
$$

for each $(x, \tau) \in \mathbb{R} \times[0, T), \quad G(y, s, x, \tau) \quad$ solves
$\begin{cases}-\frac{\partial G}{\partial s}(y, s ; x, \tau)-\mathcal{L}^{*}[G](y, s ; x, \tau)=0 & y \in \mathbb{R}, s<\tau \\ G(y, \tau ; x, \tau)=\delta(x, y) & y \in \mathbb{R}\end{cases}$

Multiplying the PDE by G, integrating by parts (Green's Theorem) and using initial/boundary conditions

$$
u(x, \tau)=\int_{\Omega} u(y, 0) G(y, 0, x, \tau) d y
$$

Integral Representation Formula of the PDE Solution

following PDE theory...
\square

$$
\frac{\partial u}{\partial \tau}-\frac{\bar{\sigma}^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}-\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right) \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \tau}(x, \tau)-\mathcal{L}[u](x, \tau)=0
$$

$$
x \in \Omega=(-\infty, U), \tau \in(0, T]
$$

the related transition probability density (Green fundamental solution)

$$
G(y, s, x, \tau)=\frac{1}{\sqrt{2 \pi \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}} \exp \left\{-\frac{\left[y-x-\int_{s}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{2 \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}\right\}, \quad \tau>s
$$

for each $(x, \tau) \in \mathbb{R} \times[0, T), \quad G(y, s, x, \tau) \quad$ solves
$\begin{cases}-\frac{\partial G}{\partial s}(y, s ; x, \tau)-\mathcal{L}^{*}[G](y, s ; x, \tau)=0 & y \in \mathbb{R}, s<\tau \\ G(y, \tau ; x, \tau)=\delta(x, y) & y \in \mathbb{R}\end{cases}$

Multiplying the PDE by G, integrating by parts (Green's Theorem) and using initial/boundary conditions

$$
u(x, \tau)=\int_{\Omega} u(y, 0) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \int_{\partial \Omega} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(y, s) G(y, s, x, \tau) d y d s
$$

Integral Representation Formula of the PDE Solution

following PDE theory...
\square

$$
\frac{\partial u}{\partial \tau}-\frac{\bar{\sigma}^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}-\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right) \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \tau}(x, \tau)-\mathcal{L}[u](x, \tau)=0
$$

$$
x \in \Omega=(-\infty, U), \tau \in(0, T]
$$

the related transition probability density (Green fundamental solution)

$$
G(y, s, x, \tau)=\frac{1}{\sqrt{2 \pi \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}} \exp \left\{-\frac{\left[y-x-\int_{s}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{2 \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}\right\}, \quad \tau>s
$$

for each $(x, \tau) \in \mathbb{R} \times[0, T), \quad G(y, s, x, \tau) \quad$ solves
$\begin{cases}-\frac{\partial G}{\partial s}(y, s ; x, \tau)-\mathcal{L}^{*}[G](y, s ; x, \tau)=0 & y \in \mathbb{R}, s<\tau \\ G(y, \tau ; x, \tau)=\delta(x, y) & y \in \mathbb{R}\end{cases}$

Multiplying the PDE by G, integrating by parts (Green's Theorem) and using initial/boundary conditions

RF

$$
\begin{aligned}
u(x, \tau)= & \int_{\Omega} u(y, 0) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \int_{\partial \Omega} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(y, s) G(y, s, x, \tau) d y d s \\
- & \int_{-\infty}^{U} u_{0}(y) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s, x, \tau) d s \\
& \quad \text { for each } \quad x \in \Omega=(-\infty, U), \tau \in(0, T]
\end{aligned}
$$

Boundary Integral Equation

analytical INTEGRAL REPRESENTATION FORMULA

$$
\begin{aligned}
& \text { RF } u(x, \tau)=\int_{-\infty}^{U} u_{0}(y) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s, x, \tau) d s \\
& \text { for each } x \in \Omega=(-\infty, U), \tau \in(0, T]
\end{aligned}
$$

Boundary Integral Equation

analytical INTEGRAL REPRESENTATION FORMULA

$$
\begin{aligned}
& \text { RF } u(x, \tau)=\int_{-\infty}^{U} u_{0}(y) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s, x, \tau) d s \\
& \text { for each } x \in \Omega=(-\infty, U), \tau \in(0, T] \\
& \text { unknown density }
\end{aligned}
$$

but on the boundary, letting $x \rightarrow U$, BOUNDARY INTEGRAL EQUATION

$$
\begin{aligned}
& \text { BIE } 0=u(U, \tau):=\int_{-\infty}^{U} u_{0}(y) G(y, 0 ; U, \tau) d y+\int_{0}^{\tau} \frac{\sigma^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s ; U, \tau) d s \\
& \text { for each } \tau \in(0, T] \\
& \text { solve the equation... numerically }
\end{aligned}
$$

Boundary Integral Equation

analytical INTEGRAL REPRESENTATION FORMULA

$$
\begin{aligned}
& \mathrm{RF} u(x, \tau)=\int_{-\infty}^{U} u_{0}(y) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s, x, \tau) d s \\
& \text { for each } x \in \Omega=(-\infty, U), \tau \in(0, T]
\end{aligned}
$$

but on the boundary, letting $x \rightarrow U$, BOUNDARY INTEGRAL EQUATION

$$
\begin{aligned}
& \mathrm{BIE} \quad 0=u(U, \tau):=\int_{-\infty}^{U} u_{0}(y) G(y, 0 ; U, \tau) d y+\int_{0}^{\tau} \frac{\sigma^{2}(s)}{2} \frac{\partial u}{\partial u}(U, s) G(U, s ; U, \tau) d s \\
& \text { for each } \tau \in(0, T]
\end{aligned}
$$

Boundary Integral Equation

analytical INTEGRAL REPRESENTATION FORMULA

\square $u(x, \tau)=\int_{-\infty}^{U} u_{0}(y) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s, x, \tau) d s$
for each $\quad x \in \Omega=(-\infty, U), \tau \in(0, T]$
but on the boundary, letting $x \rightarrow U$, BOUNDARY INTEGRAL EQUATION

$$
\begin{aligned}
& \mathrm{BIE} \quad 0=u(U, \tau):=\int_{-\infty}^{U} u_{0}(y) G(y, 0 ; U, \tau) d y+\int_{0}^{\tau} \frac{\sigma^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s ; U, \tau) d s \\
& \text { for each } \tau \in(0, T]
\end{aligned}
$$

Note!: when $U \rightarrow+\infty$ the method reduces to the evaluation of the payoff expected value

Numerical Resolution of the Boundary Integral Equation

by COLLOCATION METHOD:

- uniform decomposition of the time interval $[0, T]$ with time step

$$
\Delta t=T / N_{\Delta t}: \quad t_{k}=k \Delta t \quad k=0, \ldots, N_{\Delta t}
$$

- approximation of the BIE unknown

$$
\frac{\partial u}{\partial y}(U, s) \approx \phi(s):=\sum_{k=1}^{N_{\Delta t}} \alpha_{k} \varphi_{k}(s)
$$

with $\varphi_{k}(s):=H\left[s-t_{k-1}\right]-H\left[s-t_{k}\right]$ for $k=1, \ldots, N_{\Delta t}$

- evaluation of BIE at the collocation nodes: $\quad \bar{t}_{j}=\frac{t_{j}+t_{j-1}}{2} \quad j=1, \ldots, N_{\Delta t}$
\square

$$
0=u(U, \tau):=\int_{-\infty}^{U} u_{0}(y) G(y, 0 ; U, \tau) d y+\int_{0}^{\tau} \frac{\partial u}{\partial y}(U, s) \frac{\sigma^{2}(s)}{2} G(U, s ; U, \tau) d s
$$

Numerical Resolution of the Boundary Integral Equation

by COLLOCATION METHOD:

- uniform decomposition of the time interval $[0, T]$ with time step

$$
\Delta t=T / N_{\Delta t}: \quad t_{k}=k \Delta t \quad k=0, \ldots, N_{\Delta t}
$$

- approximation of the BIE unknown

$$
\frac{\partial u}{\partial y}(U, s) \approx \phi(s):=\sum_{k=1}^{N_{\Delta t}} \alpha_{k} \varphi_{k}(s)
$$

with $\varphi_{k}(s):=H\left[s-t_{k-1}\right]-H\left[s-t_{k}\right]$ for $k=1, \ldots, N_{\Delta t}$

- evaluation of BIE at the collocation nodes: $\quad \bar{t}_{j}=\frac{t_{j}+t_{j-1}}{2} \quad j=1, \ldots, N_{\Delta t}$

$$
0=u\left(U, \tau_{j}\right)=\int_{-\infty}^{U} u_{0}(y) G\left(y, 0 ; U, \bar{\tau}_{j}\right) d y+\int_{0}^{T_{0}} \sum_{k=0}^{N y=1} \alpha_{k} \varphi_{k}(s) \frac{\sigma^{2}(s)}{2} G\left(U, s ; U, \bar{t}_{j}\right) d s
$$

Numerical Resolution of the Boundary Integral Equation

by COLLOCATION METHOD:

- uniform decomposition of the time interval $[0, T]$ with time step

$$
\Delta t=T / N_{\Delta t}: \quad t_{k}=k \Delta t \quad k=0, \ldots, N_{\Delta t}
$$

- approximation of the BIE unknown

$$
\frac{\partial u}{\partial y}(U, s) \approx \phi(s):=\sum_{k=1}^{N_{\Delta t}} \alpha_{k} \varphi_{k}(s)
$$

with $\varphi_{k}(s):=H\left[s-t_{k-1}\right]-H\left[s-t_{k}\right]$ for $k=1, \ldots, N_{\Delta t}$

- evaluation of BIE at the collocation nodes: $\quad \bar{t}_{j}=\frac{t_{j}+t_{j-1}}{2} \quad j=1, \ldots, N_{\Delta t}$

$$
\sum_{\mathcal{A}_{j k}}^{\sum_{k=1}^{N_{\Delta t}} a_{k} \underbrace{\int_{0}^{t_{j}} \varphi_{k}(s) \frac{\sigma^{2}(s)}{2} G\left(U, s ; U, \bar{t}_{j}\right) d s}_{\mathcal{F}_{j}}=-\underbrace{\int_{-\infty}^{U} u_{0}(y) G\left(y, 0 ; U, \bar{t}_{j}\right) d y}_{-\infty}}
$$

Numerical Resolution of the Boundary Integral Equation

$$
\begin{aligned}
& \mathcal{A} \alpha=\mathcal{F} \\
& \mathcal{A}=\left(\begin{array}{ccccc}
A_{11} & 0 & 0 & \cdots & 0 \\
A_{21} & A_{22} & 0 & \cdots & 0 \\
A_{31} & A_{32} & A_{33} & \cdots & 0 \\
\vdots & \cdots & \ddots & \ddots & \vdots \\
A_{N_{\Delta t} 1} & A_{N_{\Delta t} 2} & \cdots & A_{N_{\Delta t} N_{\Delta t}-1} & A_{N_{\Delta t} N_{\Delta t}}
\end{array}\right) \quad \begin{array}{l}
\\
\text { as the Green's function } \\
\text { is defined for } \tau>s
\end{array} \\
& \mathcal{A}_{j k}=\int_{0}^{\bar{t}_{j}} \varphi_{k}(s) \frac{\bar{\sigma}^{2}(s)}{2} G\left(U, s ; U, \bar{t}_{j}\right) d s=\int_{t_{k-1}}^{\min \left(t_{k}, \bar{t}_{j}\right)} \frac{\bar{\sigma}^{2}(s)}{2 \sqrt{2 \pi \int_{s}^{\bar{t}_{j}} \bar{\sigma}^{2}(v) d v}} \exp \left\{-\frac{\left[\int_{s}^{\bar{t}_{j}}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{2 \int_{s}^{\bar{t}_{j}} \bar{\sigma}^{2}(v) d v} d s\right. \\
& j, k=1, \ldots, N_{\Delta t}, j \geq k
\end{aligned}
$$

... here in a user-friendly way:
numerical integration is simply performed by adaptive quadrature functions of Matlab:

- quad
- and quadgk for weak singularity in matrix diagonal entries

Numerical Resolution of the Boundary Integral Equation

$$
\mathcal{A} \alpha=\mathcal{F}
$$

$$
\mathcal{A}=\left(\begin{array}{ccccc}
A_{11} & 0 & 0 & \cdots & 0 \\
A_{21} & A_{22} & 0 & \cdots & 0 \\
A_{31} & A_{32} & A_{33} & \cdots & 0
\end{array}\right) \quad \begin{aligned}
& \text { as the Green's function } \\
& \text { is defined for } \tau>s
\end{aligned}
$$

$$
\mathcal{A}_{j k}=\int_{0}^{\bar{t}_{j}} \varphi_{k}(s) \frac{\bar{\sigma}^{2}(s)}{2} G\left(U, s ; U, \bar{t}_{j}\right) d s=\int_{t_{k-1}}^{\operatorname{minan}\left(t_{k}, \bar{t}_{j}\right)} \frac{\bar{\sigma}^{2}(s)}{2 \sqrt{2 \pi \int_{s}^{t_{j}} \bar{\sigma}^{2}(v) d v}} \exp \left\{-\frac{\left[\int_{s}^{\bar{t}_{j}}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{2 \int_{s}^{\bar{t}_{j}} \bar{\sigma}^{2}(v) d v}\right\} d s
$$

$$
j, k=1, \ldots, N_{\Delta t}, j \geq k
$$

N.B.: if σ, r, δ are constant then $\mathcal{A}=\left(\begin{array}{ccccc}A_{1} & 0 & 0 & \cdots & 0 \\ A_{2} & A_{1} & 0 & \cdots & 0 \\ A_{3} & A_{2} & A_{1} & \cdots & 0 \\ \vdots & \ldots & \ddots & \ddots & \vdots \\ A_{N_{\Delta t}} & A_{N_{\Delta t-1}} & \cdots & A_{N_{2}} & A_{N_{1}}\end{array}\right)$

Numerical Resolution of the Boundary Integral Equation

$$
\begin{aligned}
& \mathcal{A} \alpha=\mathcal{F} \\
& \mathcal{A}=\left(\begin{array}{ccccc}
A_{11} & 0 & 0 & \cdots & 0 \\
A_{21} & A_{22} & 0 & \cdots & 0 \\
A_{31} & A_{32} & A_{33} & \cdots & 0 \\
\vdots & \cdots & \ddots & \ddots & \vdots \\
A_{N_{\Delta t} 1} & A_{N_{\Delta t} 2} & \cdots & A_{N_{\Delta t} N_{\Delta t}-1} & A_{N_{\Delta t} N_{\Delta t}}
\end{array}\right) \\
& \text { as the Green's function } \\
& \text { is defined for } \tau>S
\end{aligned}
$$

$$
\begin{aligned}
& j, k=1, \ldots, N_{\Delta t}, j \geq k
\end{aligned}
$$

$$
\mathcal{A} \alpha=\mathcal{F}
$$

analytical INTEGRAL REPRESENTATION FORMULA

$$
\begin{aligned}
& \text { RF } u(x, \tau)=\int_{-\infty}^{U} u_{0}(y) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s, x, \tau) d s \\
& \text { for each } x \in \Omega=(-\infty, U), \tau \in(0, T]
\end{aligned}
$$

Numerical Approximation of the option price

approximation of INTEGRAL REPRESENTATION FORMULA

$$
\begin{aligned}
& \text { RF } u(x, \tau) \approx \int_{-\infty}^{U} u_{0}(y) G(y, 0, x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \sum_{k=1}^{N \Delta t} \alpha_{k} \varphi_{k}(s) G(U, s, x, \tau) d s \\
& \text { for each } x \in \Omega=(-\infty, U), \tau \in(0, T] \\
& u(x, \tau) \approx \int_{-\infty}^{\min (U, \log (E))} \frac{\left(E-e^{y}\right)}{\sqrt{2 \pi \int_{0}^{\tau} \bar{\sigma}^{2}(v) d v}} \exp \left\{-\frac{\left[y-x-\int_{0}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{2 \int_{0}^{\tau} \bar{\sigma}^{2}(v) d v}\right\} d y+ \\
& \quad+\sum_{k=1}^{\operatorname{ceil}\left[\frac{t}{\Delta t}\right]} \alpha_{k} \int_{t_{k-1}}^{\min \left(t_{k}, \tau\right)} \frac{\bar{\sigma}^{2}(s)}{2} \frac{1}{\sqrt{2 \pi \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}} \exp \left\{-\frac{\left[U-x-\int_{s}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{2 \int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}\right\} d s
\end{aligned}
$$

$$
\forall S \in\left(0, S_{u}\right), \forall t \in\left[t_{0}, T\right) \quad V(S, t)=u(\log (S), T-t) e^{-\int_{t}^{T} r\left(t^{\prime}\right) d t^{\prime}}
$$

Hedging

This numerical strategy is very useful and efficient also for hedging that needs computing Greeks because it is sufficient to evaluate the derivative of the RF

- Hedging without computing the primary unknown V
- $\Delta:=\frac{\partial V}{\partial S}=\frac{1}{S} \frac{\partial u}{\partial x}(\log (S), T-t) e^{-\int_{t}^{T} r\left(t^{\prime}\right) d t^{\prime}}$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}(x, \tau):=\int_{-\infty}^{U} u_{0}(y) \frac{\partial G}{\partial x}(y, 0 ; x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial G}{\partial x}(U, s ; x, \tau) \frac{\partial u}{\partial y}(U, s) d s \\
& \frac{\partial G}{\partial x}(y, s, x, \tau)=G(y, s, x, \tau) \frac{y-x-\int_{s}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v}{\int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}
\end{aligned}
$$

BOUNDARY INTEGRAL EQUATION

BIE

$$
\begin{aligned}
& 0=u(U, \tau):=\int_{-\infty}^{U} u_{0}(y) G(y, 0 ; U, \tau) d y+\int_{0}^{\tau} \frac{\sigma^{2}(s)}{2} \frac{\partial u}{\partial y}(U, s) G(U, s ; U, \tau) d s \\
& \text { for each } \tau \in(0, T] \\
& \text { solve the equation... numerically }
\end{aligned}
$$

Numerical Example: test with constant parameters

[L.V. Ballestra - G. Pacelli, 2014]

$\sigma=0.25$ constant volatility
$E=1$ exercise price
$r=0.1$ interest rate
$\delta=0$ dividend yield
$T=1$ maturity
$e^{x^{*}}=S^{*}=[0: 0.05: 2]$
current underlying asset values
$S_{u}=2$ upper barrier $>E$
$V\left(S^{*}, 0\right)$

[J.C. Hull, 2011]

$$
\left\{\begin{aligned}
\left\{\begin{array}{rlrl}
\left.V(S, t)=E e^{-r(T-t)} \mathcal{N}\left[y_{1}+(1-2 \lambda \sigma) \sqrt{T-t}\right)\right] \\
& - & S e^{-\delta(T-t)} \mathcal{N}\left[y_{1}-2 \lambda \sigma \sqrt{T-t}\right] \\
& +S e^{-\delta(T-t)}\left(S_{u} / S\right)^{2 \lambda} \mathcal{N}\left[-y_{1}\right] & \\
& -E e^{-r(T-t)}\left(S_{u} / S\right)^{2 \lambda-2} \mathcal{N}\left[-y_{1}+\sigma \sqrt{(T-t)}\right] & \text { if } S_{u} \leq E, \\
V(S, t)=P+ & S e^{-\delta(T-t)}\left(S_{u} / S\right)^{2 \lambda} \mathcal{N}[-y] & \\
- & E e^{-r(T-t)}\left(S_{u} / S\right)^{2 \lambda-2} \mathcal{N}[-y+\sigma \sqrt{(T-t)}] & \text { if } S_{u} \geq E, \\
\lambda=\frac{r-\delta+\sigma^{2} / 2}{\sigma^{2}} ; & y_{1}=\frac{\log \left(S_{u} / S\right)}{\sigma \sqrt{T-t}}+\lambda \sigma \sqrt{T-t} ; & y=\frac{\log \left(S_{u}^{2} /(S E)\right)}{\sigma \sqrt{T-t}}+\lambda \sigma \sqrt{T-t} ; \\
P(S, t) \text { is the value of the European put option without barriers }
\end{array}\right. \\
\hline
\end{aligned}\right.
$$

[L.V. Ballestra - G. Pacelli, 2014]
$\sigma=0.25$ constant volatility
$E=1$ exercise price
$r=0.1$ interest rate
$\delta=0$ dividend yield
$T=1$ maturity
$e^{x^{*}}=S^{*}=[0: 0.05: 2]$
current underlying asset values
$S_{u}=2$ upper barrier $>E$

$$
V\left(S^{*}, 0\right)
$$

FINITE DIFFERENCES
$\Delta t=\Delta x^{2} \quad$ (implicit in time and centered in space)

$\boldsymbol{\Delta x}$	Max Abs Err	Max Rel Err	CPU time
0.1	3.210^{-3}	4.510^{+0}	$1.610^{-2} \mathrm{~s}$
0.05	9.210^{-4}	1.210^{+0}	$1.610^{-2} \mathrm{~s}$
0.025	2.510^{-4}	9.610^{-2}	$1.110^{-1} \mathrm{~s}$
0.0125	6.610^{-5}	2.510^{-2}	$2.310^{+0} \mathrm{~s}$
0.00625	1.410^{-5}	5.910^{-3}	$5.810^{+1} \mathrm{~s}$
0.003125	3.610^{-6}	1.610^{-3}	$1.910^{+3} \mathrm{~s}$

$\boldsymbol{\Delta} \boldsymbol{t}$	Max Abs Err	Max Rel Err	CPU time
0.1	2.710^{-6}	5.610^{-2}	$7.010^{-1} \mathrm{~s}$
0.05	7.210^{-7}	1.510^{-2}	$1.510^{+0} \mathrm{~s}$
0.025	1.810^{-7}	3.810^{-3}	$2.710^{+0} \mathrm{~s}$
0.0125	4.910^{-8}	1.010^{-3}	$5.510^{+0} \mathrm{~s}$
0.00625	1.610^{-8}	3.410^{-4}	$1.110^{+1} \mathrm{~s}$
0.003125	4.910^{-9}	9.810^{-5}	$2.310^{+1} \mathrm{~s}$

[C. Guardasoni - S. Sanfelici, A boundary element approach to barrier option pricing in Black-Scholes framework, International Journal of Computer Mathematics, 2016]

Numerical Example: test with constant parameters

Δ - Hedging
$\sigma=0.25$ constant volatility
$E=1$ exercise price
$r=0.1$ interest rate
$\delta=0$ dividend yield
$T=1$ maturity

$$
e^{x^{*}}=S^{*}
$$

current underlying asset values
$S_{u}=2$ upper barrier $>E$

$$
\Delta\left(S^{*}, 0\right)
$$

approximation by $2^{\text {nd }}$ order CENTERED FINITE DIFFERENCE and closed formula option values

Δx	$S^{*}=1.9$	$S^{*}=1$
0.1	-1.33064710^{-3}	-3.06822810^{-1}
0.05	-1.25951410^{-3}	-3.01577910^{-1}
0.025	-1.24207510^{-3}	-3.00240010^{-1}
0.0125	-1.23773610^{-3}	-2.99903810^{-1}
0.00625	-1.23665310^{-3}	-2.99819710^{-1}
0.003125	-1.23638210^{-3}	-2.99798610^{-1}

$\boldsymbol{\Delta t} \mathbf{t}$	$\boldsymbol{S}^{*}=\mathbf{1 . 9}$	$\boldsymbol{S}^{*}=\boldsymbol{1}$
0.1	-1.21782410^{-3}	-2.99791610^{-1}
0.05	-1.23268010^{-3}	-2.99791610^{-1}
0.025	-1.23589510^{-3}	-2.99791610^{-1}
0.0125	-1.23618010^{-3}	-2.99791610^{-1}
0.00625	-1.23622410^{-3}	-2.99791610^{-1}
0.003125	-1.23626810^{-3}	-2.99791610^{-1}

N.B.: in the case of constant parameters, we compare results with the closed formula for the greek.
$E=3$ exercise price
$e^{x^{*}}=S^{*}=[0: 0.05: 2]$
current underlying asset values
$S_{u}=2$ upper barrier $<E$
$V\left(S^{*}, 0\right)$

SABO

	Max Abs Err	Max Rel Err	CPU time
0.1	7.410^{-4}	9.610^{-3}	$7.810^{-1} \mathrm{~s}$
0.05	2.010^{-4}	2.610^{-3}	$1.410^{+0} \mathrm{~s}$
0.025	5.210^{-5}	6.810^{-4}	$2.510^{+0} \mathrm{~s}$
0.0125	1.510^{-5}	1.910^{-4}	$4.910^{+0} \mathrm{~s}$
0.00625	5.310^{-6}	6.410^{-5}	$9.710^{+0} \mathrm{~s}$

FINITE DIFFERENCES
$\Delta t=\Delta x^{2} \quad$ (implicit in time and centered in space)

	Max Abs Err	Max Rel Err	CPU time
0.1	2.610^{-1}	3.310^{+0}	$1.610^{-2} \mathrm{~s}$
0.05	8.610^{-2}	1.010^{+0}	$1.610^{-2} \mathrm{~s}$
0.025	3.110^{-4}	8.110^{-3}	$1.310^{-1} \mathrm{~s}$
0.0125	8.110^{-4}	2.010^{-3}	$2.410^{+0} \mathrm{~s}$
0.00625	2.010^{-4}	4.910^{-4}	$6.110^{+1} \mathrm{~s}$

MONTE CARLO
$M=50000$ is the initial sampling
$N_{\Delta t}=100$ is the number of initial time interval decomposition

$\left(M, N_{\Delta t}\right) \cdot k$	Max Abs Err	Max Rel Err	CPU time
$\mathrm{k}=1$	5.010^{-2}	5.710^{-1}	$5.110^{+0} \mathrm{~s}$
$\mathrm{k}=2$	3.410^{-2}	4.410^{-1}	$2.710^{+1} \mathrm{~s}$
$\mathrm{k}=3$	2.710^{-2}	3.210^{-1}	$7.210^{+1} \mathrm{~s}$

[C. Guardasoni - S. Sanfelici, A boundary element approach to barrier option pricing in Black-Scholes framework, International Journal of Computer Mathematics, 2016]

piecewise constant volatility

$$
\begin{aligned}
& S_{u}=101 \quad t_{0}=0, T=0.5 \quad S^{*}=100 \quad r=0.03, \quad d=0.02, \\
& \sigma(t)= \begin{cases}0.0105 & t<0.25 \\
0.01147824 & 0.25 \leq t \leq T^{\prime}\end{cases}
\end{aligned}
$$

$E=101$

n	$V_{S A B O}(100,0)$	CPU time (s)
2	0.89178	$1.0 \cdot 10^{+0}$
3	0.89373	$2.0 \cdot 10^{+0}$
4	0.89419	$4.5 \cdot 10^{+0}$
5	0.89433	$1.3 \cdot 10^{+1}$
6	0.89436	$3.9 \cdot 10^{+1}$
7	0.89437	$1.2 \cdot 10^{+2}$

$E=103$

n	$V_{S A B O}(100,0)$	CPU time (s)
2	1.08163	$1.0 \cdot 10^{+0}$
3	1.08634	$1.9 \cdot 10^{+0}$
4	1.08787	$4.5 \cdot 10^{+0}$
5	1.08828	$1.2 \cdot 10^{+1}$
6	1.08839	$3.7 \cdot 10^{+1}$
7	1.08842	$1.2 \cdot 10^{+2}$

n	$V_{F D}(100,0)$	CPU time (s)
0	1.10233	$1.6 \cdot 10^{-1}$
1	1.09175	$2.4 \cdot 10^{+0}$
2	1.08926	$3.5 \cdot 10^{+1}$
3	1.08864	$3.7 \cdot 10^{+2}$
4	1.08849	$3.7 \cdot 10^{+3}$

$\Delta t_{S A B O}=T / 2^{n}$
$\Delta t_{F D}=\Delta x_{F D}^{2} \quad \Delta x_{F D}=0.25 / 2^{n}$
[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes), submitted to CAIM]

piecewise constant volatility

$$
\begin{aligned}
& S_{u}=101 \quad t_{0}=0, T=0.5 \quad S^{*}=100 \quad r=0.03, \quad d=0.02 \\
& \sigma(t)= \begin{cases}0.0105 & t<0.25 \\
0.01147824 & 0.25 \leq t \leq T\end{cases}
\end{aligned}
$$

$$
E=201 \quad \Delta t=0.0625
$$

[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes), submitted to CAIM]

time-continuous volatility

$$
\begin{aligned}
& S_{u}=30 \quad t_{0}=0, T=1 \quad S^{*}=29 \quad r=0.03, \quad d=0.02, \quad E=50 \\
& \sigma^{2}(t)=0.03+0.02(T-t)
\end{aligned}
$$

$\Delta t=T$	SABO	
n	$V\left(S^{*}, 0\right)$	CPU time
4	3.67754	4.010^{-0}
5	3.68136	1.010^{+1}
6	3.68235	3.410^{+1}
7	3.68264	1.210^{+2}

[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes), submitted to CAIM]

$$
\begin{aligned}
& S_{u}=30 \quad t_{0}=0, T=1 \quad S^{*}=29 \quad r=0.03, \quad d=0.02, \quad E=50 \\
& \sigma^{2}(t)=0.03+0.02(T-t)
\end{aligned}
$$

$$
\Delta t=0.05
$$

- - Hedging

[C. Guardasoni, Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes), submitted to CAIM]

$$
\begin{aligned}
& S_{u}=101 \quad E=50 \quad t_{0}=0, T=1 \quad S^{*}=50 \quad \sigma=0.105, \quad d=0.05, \\
& r(t)= \begin{cases}0.01 & t<0.25 \\
0.03 & 0.25 \leq t \leq I^{\prime}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial u}{\partial \tau}(x, \tau):= & \int_{-\infty}^{U} u_{0}(y) \frac{\partial G}{\partial \tau}(y, 0 ; x, \tau) d y+\int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial G}{\partial \tau}(U, s ; x, \tau) \frac{\partial u}{\partial y}(U, s) d s \\
\frac{\partial G}{\partial \tau}(y, s, x, \tau)= & \frac{G(y, s, x, \tau)}{\int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}\left\{\left[y-x-\int_{s}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(\tau)+\right. \\
& \left.+\left(\frac{\left[y-x-\int_{s}^{\tau}\left(\bar{r}-\frac{\bar{\sigma}^{2}}{2}-\bar{d}\right)(v) d v\right]^{2}}{\int_{s}^{\tau} \bar{\sigma}^{2}(v) d v}-1\right) \frac{\bar{\sigma}^{2}(\tau)}{2}\right\} .
\end{aligned}
$$

Observations

Advantages:

- implicit satisfaction of asset infinity boundary conditions
- avoidance of discretization of asset- domain (dimensional reduction)
- high precision and stability
- direct evaluation of derivated functions (greeks)

Costs are due to:

- discretization in time
- numerical quadrature

Needs:

- Green fundamental solution in a closed or approximated form
if the volatility is considered as a stochastic process the problem to evaluate a DOWN-and-OUT Call Option reduces to the following partial differential problem
V depends also on the square of volatility v

$V(x, v, t)$ option price $\quad x \in \Omega_{x}=(\log (L),+\infty), v \in \Omega_{v}=(0,+\infty), t \in[0, T)$| $\rho=$ correlation between S and v |
| :--- |
| $\eta=$ volatility of volatility |
| $\lambda=$ speed of mean reversion |
| $\theta=$ long-run variance |
| $r=$ risk-free interest rate |
| $\delta=$ dividend yield |

$\frac{\partial V}{\partial t}+\frac{1}{2} v \frac{\partial^{2} V}{\partial x^{2}}+\rho \eta v \frac{\partial^{2} V}{\partial x \partial v}+\frac{1}{2} \eta^{2} v \frac{\partial^{2} V}{\partial v^{2}}+\left(r-\delta-\frac{1}{2} v\right) \frac{\partial V}{\partial x}-(\lambda(v-v)-\theta v) \frac{\partial V}{\partial v}-r V=0$

Application to Heston model

if the volatility is considered as a stochastic process the problem to evaluate a DOWN-and-OUT Call Option reduces to the following partial differential problem
$\rho=$ correlation between S and v
$\eta=$ volatility of volatility
$\lambda=$ speed of mean reversion
$\theta=$ long-run variance
$r=$ risk-free interest rate
$\delta=$ dividend yield
$\frac{\partial V}{\partial t}+\frac{1}{2} v \frac{\partial^{2} V}{\partial x^{2}}+\rho \eta v \frac{\partial^{2} V}{\partial x \partial v}+\frac{1}{2} \eta^{2} v \frac{\partial^{2} V}{\partial v^{2}}+\left(r-\delta-\frac{1}{2} v\right) \frac{\partial V}{\partial x}-(\lambda(v-\bar{v})-\theta v) \frac{\partial V}{\partial v}-r V=0$

- final condition (payoff) $\quad V(x, v, T)=\max \left(e^{x}-E, 0\right) \quad x \in \Omega_{x} \quad v \in \Omega_{v}$
with E exercise price
boundary conditions
[E. Miglio-C. Sgarra (2011)]
- on the asset

$$
V(\log (L), 2, t)=0 \quad \lim _{x \rightarrow-\infty} V(x, v, t)=e^{x-\delta t} \quad t \in[0, T) \quad v \in \Omega_{v}
$$

- on the variance

$$
\lim _{v \rightarrow+\infty} S(x, v, t)=e^{x} \quad S(x, 0, t)=\sum_{n=0}^{+\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} S_{B S}\left(t, e^{x}, B, \bar{\sigma}_{n}, \bar{r}_{n}\right) \quad x \in \Omega_{x} \quad t \in[0, T)
$$

$S_{B S}\left(t, e^{x}, B, \bar{\sigma}_{n}, \bar{r}_{n}\right)$ Black-Scholes value with
variance $\bar{\sigma}_{n}^{2}=\frac{n \sigma^{2}}{t}$ and rate $\bar{r}_{n}=r-\delta+\lambda\left(1-e^{\mu+\sigma^{2} / 2}\right)+n \frac{\mu+\sigma^{2} / 2}{t}$

Numerical methods

Analitical solution only for Vanilla option [P.Carr, D.Madan (1999)]

- evaluation of the option over a wide subset of asset and variance values
- approximation of boundary conditions due to the truncation of the domain

representation formula

[C.Guardasoni, S.Sanfelici (2016)]
$x \in \Omega_{x}=(\log (L),+\infty), v \in \Omega_{v}=(0,+\infty), t \in[0, T)$

$$
\begin{aligned}
V(x, v, t)= & e^{-r(T-\iota)}\left\{\int_{\log (L)}^{+\infty} \int_{\Omega_{v}} V(y, w, T) G(x, y, v, w, t, T) d w d y+\right. \\
& \left.-\int_{t}^{T} \int_{\Omega_{v}} \frac{\partial V}{\partial y}(\log (L), w \cdot \tau) e^{r(T-t)} \frac{w}{2} G(x, \log (L), v, w, t, \tau) d w d \tau\right\}
\end{aligned}
$$

Fundamental solution

$G(x, y, v, w, t, \tau)$ is the joint transition probability density (or fundamental solution) that expresses the probability to move from (x, v) at time t to (y, w) at time τ

$$
G(x, y, v, w, t, \tau)=p_{t \rightarrow \tau}(x \rightarrow y, v \rightarrow w)=p_{t \rightarrow \tau}(y-x, w \mid v)=p_{t \rightarrow \tau}(y-x \mid w, v) \widetilde{p}_{t \rightarrow \tau}(v, w)
$$

- $\widetilde{p}_{t \rightarrow \tau}(v, w)$ is the transition density of the variance v conditioned on w
$\widetilde{p}_{t \rightarrow \tau}(v, w)=\gamma e^{-\gamma\left(v e^{-\lambda(\tau-t)}+w\right)}\left(\frac{w}{v e^{-\lambda(\tau-t)}}\right)^{\frac{\alpha-1}{2}} I_{\alpha-1}\left(2 \sqrt{\gamma^{2} v w e^{-\lambda(\tau-t)}}\right)$
$\gamma=\frac{2 \lambda}{\left(1-e^{-\lambda(\tau-t)}\right) \eta^{2}} \quad \alpha=\frac{2 \lambda \bar{v}}{\eta^{2}} ; \quad I$ is the modified Bessel function of the 1 st kind (Feller condition $\left.\lambda \bar{v} \geq \eta^{2}\right)$
- with an inverse Fourier transform:
$p_{t \rightarrow \tau}(y-x \mid w, v)=\mathcal{F}_{\omega}^{-1}[\widehat{p}](y-x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \widehat{p}(\omega, v, w, t, \tau) e^{-\mathrm{i} \omega(y-x)} d \omega$
$\hat{p}(\omega, v, w, t, \tau)=e^{\mathbf{i} \omega\left\{(r-d)(\tau-t)+\frac{\rho}{\eta}(w-v-\lambda \bar{v}(\tau-t))\right\}_{\phi}}\left[\omega\left(\frac{\lambda \rho}{\eta}-\frac{1}{2}\right)+\frac{1}{2} \mathbf{i} \omega^{2}\left(1-\rho^{2}\right)\right]$
$\phi[\cdot]=\ldots$ is the characteristic function of the integrated variance $\int_{t}^{\tau} v(s) d s$ given v_{t} and v_{τ}
[M. Broadie, O. Kaya (2006)]

Numerical resolution of BIE

- uniform decomposition of the time interval $[0, T]$ with time step

$$
\Delta t=T / N_{\Delta t}: \quad t_{j}=j \Delta t \quad j=0, \ldots, N_{\Delta t}
$$

- uniform decomposition of the variance interval $\left[0, v_{\max }\right]$ with step

$$
\Delta v=v_{\max } / N_{\Delta v}: \quad v_{i}=i \Delta v \quad i=0, \ldots, N_{\Delta v}
$$

- approximation of the BIE unknown

$$
q(\log (L), w, \tau) \approx \sum_{h=1}^{N_{\Delta v}} \sum_{k=1}^{N_{\Delta t}} \alpha_{h}^{(k)} \psi_{h}(w) \varphi_{k}(\tau)
$$

with

$$
\begin{aligned}
\psi_{h}(w)=H\left[w-v_{h-1}\right]-H\left[w-v_{h}\right] \\
\varphi_{k}(\tau)=H\left[\tau-t_{k-1}\right]-H\left[\tau-t_{k}\right]
\end{aligned} \quad \text { for } \quad l l, \ldots, N_{\Delta v} \quad h=1, \ldots, N_{\Delta t}
$$

- evaluation of BIE at the collocation nodes: $\quad \bar{t}_{j}=\frac{t_{j}+t_{j-1}}{2} \quad j=1, \ldots, N_{\Delta t}$

$$
\bar{v}_{i}=\frac{v_{i}+v_{i-1}}{2} \quad i=1, \ldots, N_{\Delta v}
$$

Attention!: the fundamental solution in this framework is known throughout a numerical inverse Fourier transform

Numerical resolution of BIE

$$
\mathcal{A} \alpha=\mathcal{F}
$$

- \mathcal{A} has an upper triangular Toeplitz structure

$$
\begin{aligned}
\ell=k-j & \ell=0, \ldots, N_{\Delta t} \\
& i, h=1, \ldots, N_{\Delta v}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{i h}^{(j k)} & =\int_{\max \left(\bar{t}_{j}, t_{k-1}\right)}^{t_{k}} \int_{v_{h-1}}^{v_{h}} \frac{w}{2} G\left(\log (L), \log (L), \bar{v}_{i}, w, \bar{t}_{j}, \tau\right) d w d \tau= \\
& =\int_{\frac{1}{2}-\frac{1}{2} H[\ell]}^{1} \int_{v_{h-1}}^{v_{h}} \frac{\Delta t}{4 \pi} w \widetilde{p}_{0 \rightarrow \Delta t\left(\ell-\frac{1}{2}+s\right)}\left(\bar{v}_{i}, w\right) \int_{-\infty}^{+\infty} \widehat{p}\left(\omega, \bar{v}_{i}, w, 0, \Delta t\left(\ell-\frac{1}{2}+s\right)\right) d \omega d w d s=: \mathcal{A}_{i h}^{(\ell)}
\end{aligned}
$$

- numerical quadrature rule for evaluation of inverse Fourier transform: Matlab adaptive quadrature
- numerical quadrature rule for evaluation of integrals:

Numerical example: Heston model

L.Feng-V.Linetsky (2008)
$E=100$ exercise price
$r=0.05$ interest rate
$\delta=0.02$ asset payout ratio
$\rho=-0.5$ correlation between S and v
$\eta=0.1$ volatility of volatility
$\lambda=4$ speed of mean reversion
$\bar{v}=0.04$ long-run variance
$L=110$ barrier

$$
V\left(150, v^{*}, 0\right)
$$

MONTE CARLO

SABO

$N_{\Delta t}=N_{\Delta v}$	$V\left(S^{*}, v^{*}, 0\right)$	CPU time
3	50.96	$2 \cdot 10^{+2} \mathrm{~s}$
6	50.98	$9 \cdot 10^{+2} \mathrm{~s}$
9	51.02	$2 \cdot 10^{+3} \mathrm{~s}$
12	51.01	$2 \cdot 10^{+4} \mathrm{~s}$
15	51.01	$4 \cdot 10^{+4} \mathrm{~s}$

sampling

Numerical example: Heston model

$V\left(115, v^{*}, 0\right)$

SABO | $N_{\Delta t}=N_{\Delta v}$ | $V\left(S^{*}, v^{*}, 0\right)$ |
| :---: | :---: |
| 3 | 8.04 |
| 6 | 8.06 |
| 9 | 8.31 |
| 12 | 8.29 |
| 15 | 8.30 |

BEM, $S=115$
pre- and postprocessing

$N_{\Delta t}=N_{\Delta v}$	Times
3	$1.5 \mathrm{E}+02 \mathrm{~s}$
6	$7.5 \mathrm{E}+02 \mathrm{~s}$
9	$3.4 \mathrm{E}+03 \mathrm{~s}$
12	$3.7 \mathrm{E}+03 \mathrm{~s}$
15	$6.2 \mathrm{E}+03 \mathrm{~s}$

CPU time

postprocessing

$N_{\Delta t}=N_{\Delta v}$	Times
3	$3.8 \mathrm{E}+01 \mathrm{~s}$
6	$1.4 \mathrm{E}+02 \mathrm{~s}$
9	$3.1 \mathrm{E}+02 \mathrm{~s}$
12	$3.9 \mathrm{E}+02 \mathrm{~s}$
15	$6.1 \mathrm{E}+02 \mathrm{~s}$

MONTE CARLO

		$M=10^{4}$			$M=10^{6}$			$M=10^{8}$		
	$N_{\Delta t}=100$	9.86	[9.51,10.21]	4.10-1	9.72	[9.69,9.76]	$4 \cdot 10^{+1}$	9.74	[9.73,9.74]	$4 \cdot 10^{+3}$
	$2 N_{\Delta t}$	9.22	[8.88,9.57]	7.10 ${ }^{-1}$	9.33	[9.30,9.37]	7.10 ${ }^{+1}$	9.33	[9.32,9.33]	$6 \cdot 10^{+3}$
	$4 N_{\Delta t}$	8.99	[8.64,9.33]	$1 \cdot 10^{+0}$	9.04	[9.00,9.07]	$1 \cdot 10^{+2}$	9.03	[9.03,9.04]	$1 \cdot 10^{+4}$
	$8 N_{\Delta t}$	8.81	[8.46,9.15]	$2 \cdot 10^{+0}$	8.82	[8.79,8.86]	$2 \cdot 10^{+2}$	8.83	[8.83, 8.83]	$2 \cdot 10^{+4}$
	$16 N_{\Delta t}$	8.54	[8.20,8.88]	$4 \cdot 10^{+0}$	8.68	[8.65,8.71]	$4 \cdot 10^{+2}$	8.68	[8.68, 8.68]	$4 \cdot 10^{+4}$
	$32 N_{\Delta t}$				8.58	[8.54,8.61]	$8 \cdot 10^{+2}$			
	$64 N_{\Delta t}$				8.53	[8.49,8.56]	$2 \cdot 10^{+3}$			
	$128 N_{\Delta t}$				8.50	[8.46,8.53]	$3 \cdot 10^{+3}$			
	$256 N_{\Delta t}$				8.43	[8.40,8.47]	$7 \cdot 10^{+3}$			
	$512 N_{\Delta t}$				8.39	[8.36,8.43]	$1 \cdot 10^{+4}$			

Numerical example: Heston model

References

Semi-Analytical method for the pricing of Barrier Options:

- A boundary element approach to barrier option pricing in Black-Scholes framework

International Journal of Computer Mathematics, 2016

- Fast numerical pricing of barrier options under stochastic volatility and jumps

SIAM Journal on Applied Mathematics, 2016

- Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes) submitted to CAIM

Perspective

- Extension to Asian barrier options with geometric mean
... with arithmetic mean

Thank you for the attention!

C. Guardasoni, S. Sanfelici

University of Parma, Italy

UNIMORE
UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Kolmogorov-Fokker-Planck Equations:
theoretical issues and applications

April 10-11, 2017
Modena

