

Kolmogorov-Fokker-Planck Equations: theoretical issues and applications

April 10 - 11, 2017 Modena

Efficient Method for Barrier Option Evaluation

> **C. Guardasoni**, S. Sanfelici University of Parma, Italy

Outline

Semi-Analytical method for the pricing of Barrier Options, under general dynamics.

In practice...

the extension of Boundary Element Method, introduced in the Engineering field in the 1970s, to barrier option pricing here in a user-friendly way

<u>Requirement</u>: **Knowledge** of the **fundamental solution** (transition probability density function) related to the differential model problem associated to the vanilla option **at least in an approximated form**

- Black-Scholes model problem
- Foundations
- Numerical examples
- Straightforward application to hedging
- Extension to Heston model

The financial model problem: European barrier option pricing

A European option V(S,t) is a contract which gives the buyer the right to sell (put option) or to buy (call option) an underlying asset Sat a specified strike price Eon a specified date (expiry) T

> At **maturity** *T*, for **Put Option** with exercise (strike) price *E*: if $S \le E$, the holder can buy the underlying asset at *S* and exercise the right to sell it at *E*, thus the option's value is *E* - *S*. On the contrary, if S > E, why sell something at a price *E* that is lower than its market price? Thus, if S > E, the option is not exercised and the holder receives zero.

The financial model problem: European barrier option pricing

a **knock-out barrier option** is an option whose price extinguishes when the underlying asset breaches a pre-set **barrier level**

For clarity, I will illustrate here only the case of a

European put up-and-out option

whose price extinguishes when the underlying asset breaches a pre-set **upper barrier level**

but the method is analogously applicable also to call option and other combinations of barriers too.

The mathematical model problem: European vanilla option

Under the simple **Black-Scholes paradigm**, still very common in use with **time dependent** parameters $\sigma(t), r(t), d(t)$

For this problem the **analytical solution** is known

$$N[q] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{q} e^{-y^2/2} dy \quad \text{normal cumulative distribution;} \quad q = -\frac{\log(e^x/E) + \int_{t}^{T} (r - \delta + \sigma^2/2) d\tau}{\left(\int_{t}^{T} \sigma^2 d\tau\right)^{1/2}}$$
$$V(x,t) = Ee^{-\int_{t}^{T} r d\tau} N\left[q + \left(\int_{t}^{T} \sigma^2 d\tau\right)^{1/2}\right] - e^{x - \int_{t}^{T} d d\tau} N[q]$$

[F. Black and M. Scholes, 1973]

The mathematical model problem: European vanilla option

following the PDE theory,

the analytical solution can be written as the discounted expected value of the final payoff

$$V(x,t) = e^{-\int_t^T r d\tau} \int_{-\infty}^{+\infty} V(y,T) G(y,T;x,t) dy$$

where V(y,T) is the payoff and

 $G(y, \tau; x, t)$ is the **fundamental solution** of the forward PDE

$$\begin{aligned} & \left(-\frac{\partial G}{\partial \tau} + \frac{\sigma^2}{2} \frac{\partial^2 G}{\partial y^2} - (r - \frac{\sigma^2}{2} - \delta) \frac{\partial G}{\partial y} - rG = 0 \\ & G(y, t, x, t) = \delta(x, y) \end{aligned} \right) \end{aligned}$$

[A. Friedman, 1964-1975-1976]

- Monte Carlo methods: very simple and flexible, but also very slow to converge
- Binomial/trinomial lattices: relatively easy to implement, but not particularly efficient
- Finite difference schemes: easy to implement. However, standard high-order implementations fail to achieve true high-order accuracy, due to the nonsmoothness of the options' payoffs
- Finite element methods: very accurate and fast and capable of handling discontinuous solutions; However, they are quite difficult to implement, especially if a high-degree polynomial basis is employed and have some troubles particularly in unbounded domains (as Finite Difference methods)

SABO Foundations

Semi-Analytical method for the pricing of Barrier Options, under general dynamics. based on Boundary Element Method

Foundations:

- Analytical Integral Representation of PDE solution
- Boundary Integral Equation
- Numerical Resolution of the Boundary Integral Equation by Collocation Method
- Numerical approximation of the option price

Integral Representation Formula of the PDE Solution

following **PDE theory...**

PDE
$$\frac{\partial u}{\partial \tau} - \frac{\bar{\sigma}^2}{2} \frac{\partial^2 u}{\partial x^2} - (\bar{r} - \frac{\bar{\sigma}^2}{2} - \bar{d}) \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \tau} (x, \tau) - \mathcal{L}[u](x, \tau) = 0$$

$$x \in \Omega = (-\infty, \underline{U}), \, \tau \in (0, T]$$

the related transition probability density (Green fundamental solution)

$$G(y,s,x,\tau) = \frac{1}{\sqrt{2\pi \int_s^\tau \overline{\sigma}^2(v)dv}} \exp\left\{-\frac{\left[y-x-\int_s^\tau \left(\overline{r}-\frac{\overline{\sigma}^2}{2}-\overline{d}\right)(v)dv\right]^2}{2\int_s^\tau \overline{\sigma}^2(v)dv}\right\}, \quad \tau > s$$

for each
$$(x,\tau) \in \mathbb{R} \times [0,T)$$
, $G(y,s,x,\tau)$ solves

$$\begin{cases} -\frac{\partial G}{\partial s}(y,s;x,\tau) - \mathcal{L}^*[G](y,s;x,\tau) = 0 \quad y \in \mathbb{R}, \ s < \tau \\ G(y,\tau;x,\tau) = \delta(x,y) \qquad \qquad y \in \mathbb{R} \end{cases}$$

Multiplying the PDE by G, integrating by parts (Green's Theorem) and using initial/boundary conditions

$$u(x,\tau) \quad = \quad \int_{\Omega} u(y,0) G(y,0,x,\tau) dy$$

for each $x \in \Omega = (-\infty, U), \tau \in (0, T]$

Integral Representation Formula of the PDE Solution

following **PDE theory...**

$$\begin{array}{|c|c|} \hline \textbf{PDE} & \frac{\partial u}{\partial \tau} - \frac{\bar{\sigma}^2}{2} \frac{\partial^2 u}{\partial x^2} - (\bar{r} - \frac{\bar{\sigma}^2}{2} - \bar{d}) \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \tau}(x, \tau) - \mathcal{L}[u](x, \tau) = 0 \qquad x \in \Omega = (-\infty, U), \ \tau \in (0, T] \end{array}$$

the related transition probability density (Green fundamental solution)

$$G(y,s,x,\tau) = \frac{1}{\sqrt{2\pi \int_s^\tau \overline{\sigma}^2(v)dv}} \exp\left\{-\frac{\left[y-x-\int_s^\tau \left(\overline{r}-\frac{\overline{\sigma}^2}{2}-\overline{d}\right)(v)dv\right]^2}{2\int_s^\tau \overline{\sigma}^2(v)dv}\right\}, \quad \tau > s$$

 $\label{eq:general} \text{for each } (x,\tau) \in \mathbb{R} \times \left[0,T\right), \qquad G(y,s,x,\tau) \quad \text{solves}$

$$\begin{cases} -\frac{\partial G}{\partial s}(y,s;x,\tau) - \mathcal{L}^*[G](y,s;x,\tau) = 0 \quad y \in \mathbb{R}, \ s < \tau \\ G(y,\tau;x,\tau) = \delta(x,y) \qquad \qquad y \in \mathbb{R} \end{cases}$$

Multiplying the PDE by G, integrating by parts (Green's Theorem) and using initial/boundary conditions

$$u(x,\tau) = \int_{\Omega} u(y,0)G(y,0,x,\tau)dy + \int_{0}^{\tau} \int_{\partial\Omega} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(y,s)G(y,s,x,\tau)dyds$$

for each $x \in \Omega = (-\infty, U), \tau \in (0, T]$

Integral Representation Formula of the PDE Solution

following **PDE theory...**

RF

$$\begin{array}{|c|c|} \hline \textbf{PDE} & \frac{\partial u}{\partial \tau} - \frac{\bar{\sigma}^2}{2} \frac{\partial^2 u}{\partial x^2} - (\bar{r} - \frac{\bar{\sigma}^2}{2} - \bar{d}) \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \tau}(x, \tau) - \mathcal{L}[u](x, \tau) = 0 \qquad x \in \Omega = (-\infty, U), \ \tau \in (0, T] \end{array}$$

the related transition probability density (Green fundamental solution)

$$G(y,s,x,\tau) = \frac{1}{\sqrt{2\pi \int_s^\tau \overline{\sigma}^2(v)dv}} \exp\left\{-\frac{\left[y-x-\int_s^\tau \left(\overline{r}-\frac{\overline{\sigma}^2}{2}-\overline{d}\right)(v)dv\right]^2}{2\int_s^\tau \overline{\sigma}^2(v)dv}\right\}, \quad \tau > s$$

$$\begin{cases} \text{for each } (x,\tau) \in \mathbb{R} \times [0,T) \,, & G(y,s,x,\tau) \text{ solves} \\ \\ -\frac{\partial G}{\partial s}(y,s;x,\tau) - \mathcal{L}^*[G](y,s;x,\tau) = 0 \quad y \in \mathbb{R}, \, s < \tau \\ \\ G(y,\tau;x,\tau) = \delta(x,y) & y \in \mathbb{R} \end{cases} \end{cases}$$

Multiplying the PDE by G, integrating by parts (Green's Theorem) and using initial/boundary conditions

$$\begin{aligned} u(x,\tau) &= \int_{\Omega} u(y,0)G(y,0,x,\tau)dy + \int_{0}^{\tau} \int_{\partial\Omega} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(y,s)G(y,s,x,\tau)dyds \\ &= \int_{-\infty}^{U} u_{0}(y)G(y,0,x,\tau)dy + \int_{0}^{\tau} \frac{\bar{\sigma}^{2}(s)}{2} \frac{\partial u}{\partial y}(U,s)G(U,s,x,\tau)ds \end{aligned}$$

for each $x \in \Omega = (-\infty, U), \tau \in (0, T]$

Boundary Integral Equation

analytical INTEGRAL REPRESENTATION FORMULA

RF
$$u(x,\tau) = \int_{-\infty}^{U} u_0(y)G(y,0,x,\tau)dy + \int_{0}^{\tau} \frac{\bar{\sigma}^2(s)}{2} \frac{\partial u}{\partial y}(U,s)G(U,s,x,\tau)ds$$
for each $x \in \Omega = (-\infty, U), \tau \in (0,T]$
unknown density

Boundary Integral Equation

analytical INTEGRAL REPRESENTATION FORMULA

RF
$$u(x,\tau) = \int_{-\infty}^{U} u_0(y)G(y,0,x,\tau)dy + \int_0^{\tau} \frac{\bar{\sigma}^2(s)}{2} \frac{\partial u}{\partial y}(U,s)G(U,s,x,\tau)ds$$
for each $x \in \Omega = (-\infty, U), \tau \in (0,T]$
unknown density

but on the boundary, letting $\,x
ightarrow U,\,\,$ BOUNDARY INTEGRAL EQUATION

BIE
$$0 = u(U,\tau) := \int_{-\infty}^{U} u_0(y)G(y,0;U,\tau)dy + \int_{0}^{\tau} \frac{\overline{\sigma}^2(s)}{2} \frac{\partial u}{\partial y}(U,s)G(U,s;U,\tau)ds$$
for each $\tau \in (0,T]$ **solve the equation...** numerically

Numerical Resolution of the Boundary Integral Equation

by **COLLOCATION METHOD**:

- uniform decomposition of the time interval $\ \ [0,T]$ with time step

$$\Delta t = T/N_{\Delta t}$$
: $t_k = k\Delta t$ $k = 0, \dots, N_{\Delta t}$

• approximation of the BIE unknown

$$\frac{\partial u}{\partial y}(U,s) \approx \phi(s) := \sum_{k=1}^{N_{\Delta t}} \alpha_k \varphi_k(s)$$

with
$$\varphi_k(s) := H[s - t_{k-1}] - H[s - t_k]$$
 for $k = 1, ..., N_{\Delta t}$

• evaluation of BIE at the collocation nodes:

$$\bar{t}_j = \frac{t_j + t_{j-1}}{2}$$
 $j = 1, \dots, N_{\Delta t}$

BIE
$$0 = u(U,\tau) := \int_{-\infty}^{U} u_0(y)G(y,0;U,\tau)dy + \int_0^{\tau} \frac{\partial u}{\partial y}(U,s)\frac{\overline{\sigma}^2(s)}{2}G(U,s;U,\tau)ds$$

Numerical Resolution of the Boundary Integral Equation

by **COLLOCATION METHOD**:

- uniform decomposition of the time interval $\ \ [0,T]$ with time step

$$\Delta t = T/N_{\Delta t}$$
: $t_k = k\Delta t$ $k = 0, \dots, N_{\Delta t}$

• approximation of the BIE unknown

$$\frac{\partial u}{\partial y}(U,s) \approx \phi(s) := \sum_{k=1}^{N_{\Delta t}} \alpha_k \varphi_k(s)$$

with
$$\varphi_k(s) := H[s - t_{k-1}] - H[s - t_k]$$
 for $k = 1, ..., N_{\Delta t}$

• evaluation of BIE at the collocation nodes:

$$\bar{t}_j = \frac{t_j + t_{j-1}}{2}$$
 $j = 1, \dots, N_{\Delta t}$

$$0 = u(U, \overline{t}_j) = \int_{-\infty}^U u_0(y) G(y, 0; U, \overline{t}_j) dy + \int_0^{\overline{t}_j} \sum_{k=0}^{N_{\Delta t}-1} \alpha_k \varphi_k(s) \frac{\overline{\sigma}^2(s)}{2} G(U, s; U, \overline{t}_j) ds$$

Numerical Resolution of the Boundary Integral Equation

by **COLLOCATION METHOD**:

ullet uniform decomposition of the time interval [0,T] with time step

$$\Delta t = T/N_{\Delta t}$$
: $t_k = k\Delta t$ $k = 0, \dots, N_{\Delta t}$

• approximation of the BIE unknown

$$\frac{\partial u}{\partial y}(U,s) \approx \phi(s) := \sum_{k=1}^{N_{\Delta t}} \alpha_k \varphi_k(s)$$

with
$$\varphi_k(s) := H[s - t_{k-1}] - H[s - t_k]$$
 for $k = 1, ..., N_{\Delta t}$

• evaluation of BIE at the collocation nodes:

$$\bar{t}_j = \frac{t_j + t_{j-1}}{2}$$
 $j = 1, \dots, N_{\Delta t}$

$$\sum_{k=1}^{N_{\Delta t}} \alpha_k \int_0^{\bar{t}_j} \varphi_k(s) \frac{\overline{\sigma}^2(s)}{2} G(U,s;U,\bar{t}_j) ds = -\int_{-\infty}^U u_0(y) G(y,0;U,\bar{t}_j) dy$$

$$\mathcal{A}_{jk} \qquad \qquad \mathcal{F}_j$$

Numerical Resolution of the Boundary Integral Equation $\mathcal{A}\alpha = \mathcal{F}$ $\mathcal{A} = \begin{pmatrix} A_{11} & 0 & 0 & \cdots & 0 \\ A_{21} & A_{22} & 0 & \cdots & 0 \\ A_{31} & A_{32} & A_{33} & \cdots & 0 \\ \vdots & \cdots & \ddots & \ddots & \vdots \\ A_{N_{\Delta t}1} & A_{N_{\Delta t}2} & \cdots & A_{N_{\Delta t}N_{\Delta t}-1} & A_{N_{\Delta t}N_{\Delta t}} \end{pmatrix}$ as the Green's function is defined for $\tau > s$ $\mathcal{A}_{jk} = \int_{0}^{\overline{t}_{j}} \varphi_{k}(s) \frac{\overline{\sigma}^{2}(s)}{2} G(U,s;U,\overline{t}_{j}) ds = \int_{t_{k-1}}^{\min(t_{k},\overline{t}_{j})} \frac{\overline{\sigma}^{2}(s)}{2\sqrt{2\pi \int_{s}^{\overline{t}_{j}} \overline{\sigma}^{2}(v) dv}} \exp\left\{-\frac{\left[\int_{s}^{\overline{t}_{j}} \left(\overline{r} - \frac{\overline{\sigma}^{2}}{2} - \overline{d}\right)(v) dv\right]^{2}}{2\int_{s}^{\overline{t}_{j}} \overline{\sigma}^{2}(v) dv}\right\} ds$ $j, k = 1, \ldots, N_{\Delta t}, j > k$

... here in a user-friendly way:

numerical integration is simply performed by adaptive quadrature functions of Matlab:

- quad
- and quadgk for weak singularity in matrix diagonal entries

Numerical Resolution of the Boundary Integral Equation $\mathcal{A} \alpha = \mathcal{F}$ $\mathcal{A} = \begin{pmatrix} A_{11} & 0 & 0 & \cdots & 0 \\ A_{21} & A_{22} & 0 & \cdots & 0 \\ A_{31} & A_{32} & A_{33} & \cdots & 0 \\ \vdots & \cdots & \ddots & \ddots & \vdots \\ A_{N_{\Delta t}1} & A_{N_{\Delta t}2} & \cdots & A_{N_{\Delta t}N_{\Delta t}-1} & A_{N_{\Delta t}N_{\Delta t}} \end{pmatrix}$ as the Green's function is defined for $\tau > s$ $\mathcal{A}_{jk} = \int_{0}^{\overline{t}_{j}} \varphi_{k}(s) \frac{\overline{\sigma}^{2}(s)}{2} G(U,s;U,\overline{t}_{j}) ds = \int_{t_{k-1}}^{\min(t_{k},\overline{t}_{j})} \frac{\overline{\sigma}^{2}(s)}{2\sqrt{2\pi \int_{s}^{\overline{t}_{j}} \overline{\sigma}^{2}(v) dv}} \exp\left\{-\frac{\left[\int_{s}^{\overline{t}_{j}} \left(\overline{r} - \frac{\overline{\sigma}^{2}}{2} - \overline{d}\right)(v) dv\right]^{2}}{2\int_{s}^{\overline{t}_{j}} \overline{\sigma}^{2}(v) dv}\right\} ds$ $i, k = 1, \ldots, N_{\Delta t}, j \geq k$

N.B.: if σ, r, δ are constant then

$$\mathcal{A} = \begin{pmatrix} A_1 & 0 & 0 & \cdots & 0 \\ A_2 & A_1 & 0 & \cdots & 0 \\ A_3 & A_2 & A_1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ A_{N_{\Delta t}} & A_{N_{\Delta t-1}} & \cdots & A_{N_2} & A_{N_1} \end{pmatrix}$$

Numerical Resolution of the Boundary Integral Equation $\mathcal{A}\alpha = \mathcal{F}$ $\mathcal{A} = \begin{pmatrix} A_{11} & 0 & 0 & \cdots & 0 \\ A_{21} & A_{22} & 0 & \cdots & 0 \\ A_{31} & A_{32} & A_{33} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ A_{N_{\Delta t}1} & A_{N_{\Delta t}2} & \cdots & A_{N_{\Delta t}N_{\Delta t}-1} & A_{N_{\Delta t}N_{\Delta t}} \end{pmatrix}$ as the Green's function is defined for $\tau > s$ $\mathcal{A}_{jk} = \int_{0}^{\overline{t}_{j}} \varphi_{k}(s) \frac{\overline{\sigma}^{2}(s)}{2} G(U,s;U,\overline{t}_{j}) ds = \int_{t_{k-1}}^{\min(t_{k},\overline{t}_{j})} \frac{\overline{\sigma}^{2}(s)}{2\sqrt{2\pi \int_{s}^{\overline{t}_{j}} \overline{\sigma}^{2}(v) dv}} \exp\left\{-\frac{\left[\int_{s}^{\overline{t}_{j}} \left(\overline{r} - \frac{\overline{\sigma}^{2}}{2} - \overline{d}\right)(v) dv\right]^{2}}{2\int_{s}^{\overline{t}_{j}} \overline{\sigma}^{2}(v) dv}\right\} ds$ $i, k = 1, \ldots, N_{\Delta t}, j \geq k$ $\mathcal{A}\alpha = \mathcal{F}$ α

Numerical Approximation of the option price

analytical INTEGRAL REPRESENTATION FORMULA

RF
$$u(x,\tau) = \int_{-\infty}^{U} u_0(y)G(y,0,x,\tau)dy + \int_{0}^{\tau} \frac{\bar{\sigma}^2(s)}{2} \frac{\partial u}{\partial y}(U,s)G(U,s,x,\tau)ds$$
for each $x \in \Omega = (-\infty, U), \tau \in (0,T]$
unknown density

Numerical Approximation of the option price

approximation of INTEGRAL REPRESENTATION FORMULA

Hedging

This numerical strategy is very useful and efficient also for hedging that needs computing *Greeks* because it is sufficient to evaluate the derivative of the RF

Δ - Hedging

without computing the primary unknown $\,V\,$

•
$$\Delta := \frac{\partial V}{\partial S} = \frac{1}{S} \frac{\partial u}{\partial x} (\log(S), T - t) e^{-\int_{t}^{T} r(t')dt'}$$
$$\frac{\partial u}{\partial x} (x, \tau) := \int_{-\infty}^{U} u_{0}(y) \frac{\partial G}{\partial x} (y, 0; x, \tau) dy + \int_{0}^{\tau} \frac{\overline{\sigma^{2}(s)}}{2} \frac{\partial G}{\partial x} (U, s; x, \tau) \frac{\partial u}{\partial y} (U, s) ds$$
$$\frac{\partial G}{\partial x} (y, s, x, \tau) = G(y, s, x, \tau) \frac{y - x - \int_{s}^{\tau} (\overline{r} - \frac{\overline{\sigma^{2}}}{2} - \overline{d})(v) dv}{\int_{s}^{\tau} \overline{\sigma^{2}(v)} dv}$$
BOUNDARY INTEGRAL EQUATION
BIE
$$0 = u(U, \tau) := \int_{-\infty}^{U} u_{0}(y)G(y, 0; U, \tau) dy + \int_{0}^{\tau} \frac{\overline{\sigma^{2}(s)}}{2} \frac{\partial u}{\partial y} (U, s)G(U, s; U, \tau) ds$$
for each $\tau \in (0, T]$
solve the equation... numerically

[L.V. Ballestra – G. Pacelli, 2014]

 $\sigma = 0.25 \text{ <u>constant</u> volatility}$ E = 1 exercise price r = 0.1 interest rate $\delta = 0 \text{ dividend yield}$ T = 1 maturity

 $e^{x^*} = S^* = [0:0.05:2]$ current underlying asset values $S_u = 2$ upper barrier > E

 $V(S^*, 0)$

closed-form solution

$$\begin{cases} V(S,t) = Ee^{-r(T-t)}\mathcal{N}[y_1 + (1-2\lambda\sigma)\sqrt{T-t}]] \\ -Se^{-\delta(T-t)}\mathcal{N}[y_1 - 2\lambda\sigma\sqrt{T-t}] \\ +Se^{-\delta(T-t)}(S_u/S)^{2\lambda}\mathcal{N}[-y_1] \\ -Ee^{-r(T-t)}(S_u/S)^{2\lambda-2}\mathcal{N}[-y_1 + \sigma\sqrt{(T-t)}] \end{cases} \text{ if } S_u \leq E , \\ V(S,t) = P + Se^{-\delta(T-t)}(S_u/S)^{2\lambda}\mathcal{N}[-y] \\ -Ee^{-r(T-t)}(S_u/S)^{2\lambda-2}\mathcal{N}[-y + \sigma\sqrt{(T-t)}] \end{cases} \text{ if } S_u \geq E , \\ \lambda = \frac{r - \delta + \sigma^2/2}{\sigma^2}; \quad y_1 = \frac{\log(S_u/S)}{\sigma\sqrt{T-t}} + \lambda\sigma\sqrt{T-t}; \quad y = \frac{\log\left(S_u^2/(SE)\right)}{\sigma\sqrt{T-t}} + \lambda\sigma\sqrt{T-t}; \end{cases}$$

[L.V. Ballestra – G. Pacelli, 2014]

 $\sigma = 0.25 \text{ <u>constant</u> volatility}$ E = 1 exercise price r = 0.1 interest rate $\delta = 0 \text{ dividend yield}$ T = 1 maturity

 $e^{x^*} = S^* = [0:0.05:2]$ current underlying asset values

 $S_u = 2$ upper barrier > E

 $V(S^*,0)$

SABO

Δt	Max Abs Err	Max Rel Err	CPU time
0.1	2.7 10 ⁻⁶	5.6 10 ⁻²	7.0 10 ⁻¹ s
0.05	7.2 10 ⁻⁷	1.5 10 ⁻²	1.5 10 ⁺⁰ s
0.025	1.8 10 ⁻⁷	3.8 10 ⁻³	2.7 10 ⁺⁰ s
0.0125	4.9 10 ⁻⁸	1.0 10 ⁻³	5.5 10 ⁺⁰ s
0.00625	1.6 10 ⁻⁸	3.4 10 ⁻⁴	1.1 10 ⁺¹ s
0.003125	4.9 10 ⁻⁹	9.8 10 ⁻⁵	2.3 10 ⁺¹ s

[C. Guardasoni - S. Sanfelici, *A boundary element approach to barrier option pricing in Black–Scholes framework*, International Journal of Computer Mathematics, 2016]

FINITE DIFFERENCES

 $\Delta t = \Delta x^2$ (implicit in time and centered in space)

Δx	Max Abs Err	Max Rel Err	CPU time
0.1	3.2 10 ⁻³	4.5 10 ⁺⁰	1.6 10 ⁻² s
0.05	9.2 10 ⁻⁴	1.2 10 ⁺⁰	1.6 10 ⁻² s
0.025	2.5 10 ⁻⁴	9.6 10 ⁻²	1.1 10 ⁻¹ s
0.0125	6.6 10 ⁻⁵	2.5 10 ⁻²	2.3 10 ⁺⁰ s
0.00625	1.4 10 ⁻⁵	5.9 10 ⁻³	5.8 10 ⁺¹ s
0.003125	3.6 10 ⁻⁶	1.6 10 ⁻³	1.9 10 ⁺³ s

Δ - Hedging

 $\sigma = 0.25 \text{ <u>constant</u> volatility}$ E = 1 exercise price r = 0.1 interest rate $\delta = 0 \text{ dividend yield}$ T = 1 maturity

 $e^{x^*} = S^*$

current underlying asset values

 $S_u = 2$ upper barrier > E

 $\Delta(S^*,0)$

SABO

Δt	S*=1.9	S*=1
0.1	-1.217824 10 ⁻³	-2.997916 10 ⁻¹
0.05	-1.232680 10 ⁻³	-2.997916 10 ⁻¹
0.025	-1.235895 10 ⁻³	-2.997916 10 ⁻¹
0.0125	-1.236180 10 ⁻³	-2.997916 10 ⁻¹
0.00625	-1.236224 10 ⁻³	-2.997916 10 ⁻¹
0.003125	-1.236268 10 ⁻³	-2.997916 10 ⁻¹

approximation by 2nd order CENTERED FINITE DIFFERENCE and closed formula option values

Δx	S*=1.9	S*=1	
0.1	-1.330647 10 ⁻³	-3.068228 10 ⁻¹	
0.05	-1.259514 10 ⁻³	-3.015779 10 ⁻¹	
0.025	-1.242075 10 ⁻³	-3.002400 10 ⁻¹	
0.0125	-1.237736 10 ⁻³	-2.999038 10 ⁻¹	
0.00625	-1.236653 10 ⁻³	-2.998197 10 ⁻¹	
0.003125	-1.236382 10 ⁻³	-2.997986 10 ⁻¹	

N.B.: in the case of constant parameters, we compare results with the closed formula for the greek.

FINITE DIFFERENCES

 $\Delta t = \Delta x^2$ (implicit in time and centered in space)

	Max Abs Err	Max Rel Err	CPU time
0.1	2.6 10 ⁻¹	3.3 10 ⁺⁰	1.6 10 ⁻² s
0.05	8.6 10 ⁻²	1.0 10 ⁺⁰	1.6 10 ⁻² s
0.025	3.1 10 ⁻⁴	8.1 10 ⁻³	1.3 10 ⁻¹ s
0.0125	8.1 10 ⁻⁴	2.0 10 ⁻³	2.4 10 ⁺⁰ s
0.00625	2.0 10-4	4.9 10 ⁻⁴	6.1 10 ⁺¹ s

MONTE CARLO

 $M = 50\,000$ is the initial sampling

 $N_{\Delta t} = 100$ is the number of initial time interval decomposition

$(M, N_{\Delta t}) \cdot k$	Max Abs Err Max Rel Er		CPU time
k=1	5.0 10 ⁻²	5.7 10 ⁻¹	5.1 10 ⁺⁰ s
k=2	3.4 10 ⁻²	4.4 10 ⁻¹	2.7 10 ⁺¹ s
k=3	2.7 10 ⁻²	3.2 10 ⁻¹	7.2 10 ⁺¹ s

[C. Guardasoni - S. Sanfelici, *A boundary element approach to barrier option pricing in Black–Scholes framework*, International Journal of Computer Mathematics, 2016]

Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

piecewise constant volatility

$$S_u = 101 \qquad t_0 = 0, \ T = 0.5 \qquad S^* = 100 \qquad r = 0.03, \qquad d = 0.02,$$
$$\sigma(t) = \begin{cases} 0.0105 & t < 0.25 \\ 0.01147824 & 0.25 \le t \le T \end{cases}$$

CPU time (s) $1.0 \cdot 10^{-1}$

 $2.1 \cdot 10^{+0}$

 $3.4\cdot10^{+1}$

 $3.4 \cdot 10^{+2}$

 $3.4\cdot 10^{+3}$

E = 101

1 - -

n	$V_{SABO}(100,0)$	CPU time (s)	20	$V_{\rm ED}(100)$
2	0.89178	$1.0 \cdot 10^{+0}$	10	0.00504
3	0.89373	$2.0 \cdot 10^{+0}$	0	0.89584
4	0.89419	$4.5 \cdot 10^{+0}$	1	0.89474
Ē	0.00110	1.2 10+1	2	0.89447
0	0.89433	$1.3 \cdot 10^{-1}$	3	0.89440
6	0.89436	$3.9 \cdot 10^{+1}$	4	0.89438
$\overline{7}$	0.89437	$1.2 \cdot 10^{+2}$	1	0.00100
	4 · · · · · · · · · · · · · · · · · · ·	•		

E = 103

	$\Delta t_{SABO} = T/2^n$
$\Delta t_{FD} = \Delta x_{FD}^2$	$\Delta x_{FD} = 0.25/2^n$

n	$V_{SABO}(100,0)$	CPU time (s)	22	$V_{\rm ED}(100,0)$	CPU time (s)
2 3 4 5	1.08163 1.08634 1.08787 1.08828	$\begin{array}{c} 1.0 \cdot 10^{+0} \\ 1.9 \cdot 10^{+0} \\ 4.5 \cdot 10^{+0} \\ 1.2 \cdot 10^{+1} \end{array}$	$\frac{n}{0}$ 1 2	$ $	$\frac{\text{CPU time (s)}}{1.6 \cdot 10^{-1}}$ $2.4 \cdot 10^{+0}$ $3.5 \cdot 10^{+1}$ $2.7 \cdot 10^{+2}$
6 7	1.08839 1.08842	$3.7 \cdot 10^{+1}$ $1.2 \cdot 10^{+2}$	3 4	1.08864 1.08849	$3.7 \cdot 10^{+2}$ $3.7 \cdot 10^{+3}$

[C. Guardasoni, *Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes)*, submitted to CAIM]

Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

piecewise constant volatility

$$S_u = 101 t_0 = 0, T = 0.5 S^* = 100 r = 0.03, d = 0.02,$$

$$\sigma(t) = \begin{cases} 0.0105 & t < 0.25 \\ 0.01147824 & 0.25 \le t \le T \end{cases}$$

E = 201 $\Delta t = 0.0625$

[C. Guardasoni, *Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes)*, submitted to CAIM]

Numerical Example [F. Zirilli, L. Fatone, M.C. Recchioni, (2008)]

time-continuous volatility

$$S_u = 30$$
 $t_0 = 0, T = 1$ $S^* = 29$ $r = 0.03,$ $d = 0.02,$ $E = 50$
 $\sigma^2(t) = 0.03 + 0.02(T - t)$

$\Delta t = T/2^n$		2 ⁿ SABO	
	n	$V(S^*,0)$	CPU time
	4	3.67754	4.0 10 ⁻⁰
	5	3.68136	1.0 10 ⁺¹
	6	3.68235	3.4 10 ⁺¹
	7	3.68264	1.2 10 ⁺²

[C. Guardasoni, *Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes)*, submitted to CAIM]

-3

-3.5

-4₀

S

0¹0

S

Observations

Advantages :

- implicit satisfaction of asset infinity boundary conditions
- avoidance of discretization of asset- domain (dimensional reduction)
- high precision and stability
- direct evaluation of derivated functions (greeks)

Costs are due to:

- discretization in time
- numerical quadrature

Needs :

• Green fundamental solution in a closed or approximated form

Application to Heston model

[S.L. Heston (1993)]

if the **volatility** is considered as a **stochastic process** the problem to evaluate a **DOWN-and-OUT Call Option** reduces to the following partial differential problem

V depends also on the square of volatility \boldsymbol{v}

V(x, v, t) option price $x \in \Omega_x = (\log(L), +\infty), v \in \Omega_v = (0, +\infty), t \in [0, T)$

 $\rho = \text{correlation between } S \text{ and } v$ $\eta = \text{volatility of volatility}$ $\lambda = \text{speed of mean reversion}$ $\theta = \text{long-run variance}$ r = risk-free interest rate $\delta = \text{dividend yield}$

$$\frac{\partial V}{\partial t} + \frac{1}{2}v\frac{\partial^2 V}{\partial x^2} + \rho\eta v\frac{\partial^2 V}{\partial x\partial v} + \frac{1}{2}\eta^2 v\frac{\partial^2 V}{\partial v^2} + \left(r - \delta - \frac{1}{2}v\right)\frac{\partial V}{\partial x} - (\lambda(v - \bar{v}) - \theta v)\frac{\partial V}{\partial v} - rV = 0$$

Application to Heston model

[S.L. Heston (1993)]

 $\rho = \text{correlation between } S \text{ and } v$

if the **volatility** is considered as a **stochastic process** the problem to evaluate a **DOWN-and-OUT Call Option** reduces to the following partial differential problem

$$V \text{ depends also on the square of volatility } v$$

$$V(x, v, t) \text{ option price} \quad x \in \Omega_x = (\log(L), +\infty), v \in \Omega_v = (0, +\infty), t \in [0, T)$$

$$\begin{cases} \eta = \text{ volatility } \delta \text{ real reversion } \\ \theta = \log_{-1}\text{run variance } \\ r = \text{risk-free interest rate } \\ \delta = \text{ dividend yield} \end{cases}$$

$$\frac{\partial V}{\partial t} + \frac{1}{2}v\frac{\partial^2 V}{\partial x^2} + \rho\eta v\frac{\partial^2 V}{\partial x \partial v} + \frac{1}{2}\eta^2 v\frac{\partial^2 V}{\partial v^2} + \left(r - \delta - \frac{1}{2}v\right)\frac{\partial V}{\partial x} - (\lambda(v - \bar{v}) - \theta v)\frac{\partial V}{\partial v} - rV = 0$$

$$\text{final condition (payoff)} \quad V(x, v, T) = \max(e^x - E, 0) \quad x \in \Omega_x \quad v \in \Omega_v$$
with *E* exercise price
$$\frac{\text{boundary conditions}}{\text{with } E \text{ exercise price}} \quad [E. \text{ Miglio-C. Sgarra (2011)]}$$

$$\text{o n the asset}$$

$$V(\log(L), v, t) = 0 \quad \lim_{x \to +\infty} V(x, v, t) = e^{x - \delta t} \quad t \in [0, T) \quad v \in \Omega_v$$

$$\text{o n the variance}$$

$$\lim_{v \to +\infty} S(x, v, t) = e^x \quad S(x, 0, t) = \sum_{n=0}^{+\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} S_{BS}(t, e^x, B, \bar{\sigma}_n, \bar{r}_n) \quad x \in \Omega_x \quad t \in [0, T)$$

$$S_{BS}(t, e^x, B, \bar{\sigma}_n, \bar{r}_n) \text{ Black-Scholes value with variance } \sigma_n^2 = \frac{m^2}{t} \text{ and rate } \bar{r}_n = r - \delta + \lambda(1 - e^{\mu + \sigma^2/2}) + n\frac{\mu + \sigma^2/2}{t}$$

Numerical methods

 $x \in \Omega_x = (\log(L), +\infty), v \in \Omega_v = (0, +\infty), t \in [0, T)$

$$\begin{split} V(x,v,t) &= e^{-r(T-t)} \left\{ \int_{\log(L)}^{+\infty} \int_{\Omega_v} V(y,w,T) G(x,y,v,w,t,T) \, dw \, dy + \\ &- \int_t^T \int_{\Omega_v} \frac{\partial V}{\partial y} (\log(L),w,\tau) e^{r(T-t)} \frac{w}{2} G(x,\log(L),v,w,t,\tau) dw \, d\tau \right\} \end{split}$$

Fundamental solution

[C. Guardasoni, S. Sanfelici (SIAM 2016)]

 $G(x, y, v, w, t, \tau)$ is the joint transition probability density (or fundamental solution) that expresses the probability to move from (x, v) at time t to (y, w) at time τ

$$G(x, y, v, w, t, \tau) = p_{t \to \tau}(x \to y, v \to w) = p_{t \to \tau}(y - x, w | v) = p_{t \to \tau}(y - x | w, v) \widetilde{p}_{t \to \tau}(v, w)$$

• $\tilde{p}_{t\to\tau}(v,w)$ is the transition density of the variance v conditioned on w [W. Feller (1951)]

$$\widetilde{p}_{t\to\tau}(v,w) = \gamma e^{-\gamma \left(v e^{-\lambda(\tau-t)} + w\right)} \left(\frac{w}{v e^{-\lambda(\tau-t)}}\right)^{\frac{\alpha-1}{2}} I_{\alpha-1} \left(2\sqrt{\gamma^2 v w e^{-\lambda(\tau-t)}}\right)$$

 $\gamma = \frac{2\lambda}{\left(1 - e^{-\lambda(\tau - t)}\right)\eta^2} \quad \alpha = \frac{2\lambda\bar{v}}{\eta^2}; \quad I \text{ is the modified Bessel function of the 1st kind (Feller condition } \lambda\bar{v} \ge \eta^2)$

• with an inverse Fourier transform:

 $p_{t\to\tau}(y-x|w,v) = \mathcal{F}_{\omega}^{-1}[\widehat{p}](y-x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{p}(\omega,v,w,t,\tau) e^{-\mathbf{i}\omega(y-x)} d\omega$ $\widehat{p}(\omega,v,w,t,\tau) = e^{\mathbf{i}\omega\left\{(r-d)(\tau-t) + \frac{\rho}{\eta}\left(w-v-\lambda\overline{v}(\tau-t)\right)\right\}} \phi\left[\omega\left(\frac{\lambda\rho}{\eta} - \frac{1}{2}\right) + \frac{1}{2}\mathbf{i}\omega^2(1-\rho^2)\right]$ $\phi[\cdot] = \dots \text{ is the characteristic function of the integrated variance } \int_t^{\tau} v(s)ds \text{ given } v_t \text{ and } v_{\tau}$ $[\mathbf{M. Broadie, O. Kaya (2006)]}$

Numerical resolution of BIE

• uniform decomposition of the time interval [0,T] with time step

$$\Delta t = T/N_{\Delta t}: \qquad t_j = j\Delta t \quad j = 0, \dots, N_{\Delta t}$$

- uniform decomposition of the variance interval $\left[0, v_{\max}
ight]$ with step

$$\Delta v = v_{\max}/N_{\Delta v}: \qquad v_i = i\Delta v \quad i = 0, \dots, N_{\Delta v}$$

approximation of the BIE unknown

$$q(\log(L), w, \tau) \approx \sum_{h=1}^{N_{\Delta v}} \sum_{k=1}^{N_{\Delta t}} \alpha_h^{(k)} \psi_h(w) \varphi_k(\tau)$$

$$\psi_h(w) = H[w - v_{h-1}] - H[w - v_h]$$

$$\varphi_k(\tau) = H[\tau - t_{k-1}] - H[\tau - t_k]$$
for
$$h = 1, \dots, N_{\Delta v}$$

$$k = 1, \dots, N_{\Delta t}$$

with

• evaluation of BIE at the collocation nodes:

$$\bar{t}_j = \frac{t_j + t_{j-1}}{2} \qquad j = 1, \dots, N_{\Delta t}$$

 $\bar{v}_i = \frac{v_i + v_{i-1}}{2} \qquad i = 1, \dots, N_{\Delta v}$

Attention!: the fundamental solution in this framework is known throughout a numerical inverse Fourier transform

Numerical resolution of BIE [C. Guardas

[C. Guardasoni, S. Sanfelici (SIAM 2016)]

$$\mathcal{A}\alpha = \mathcal{F}$$

•
$$\mathcal{A}$$
 has an upper triangular Toeplitz structure $\ell = k - j$ $\ell = 0, \dots, N_{\Delta t}$
 $i, h = 1, \dots, N_{\Delta v}$
 $\mathcal{A}_{ih}^{(jk)} = \int_{\max(\bar{t}_j, t_{k-1})}^{t_k} \int_{v_{h-1}}^{v_h} \frac{w}{2} G(\log(L), \log(L), \bar{v}_i, w, \bar{t}_j, \tau) dw d\tau =$
 $= \int_{\frac{1}{2} - \frac{1}{2} H[\ell]}^{1} \int_{v_{h-1}}^{v_h} \frac{\Delta t}{4\pi} w \tilde{p}_{0 \to \Delta t(\ell - \frac{1}{2} + s)}(\bar{v}_i, w) \int_{-\infty}^{+\infty} \hat{p}(\omega, \bar{v}_i, w, 0, \Delta t(\ell - \frac{1}{2} + s)) d\omega dw ds =: \mathcal{A}_{ih}^{(\ell)}$
 $(\mathcal{A}_{ih}^{(0)} \mathcal{A}_{ih}^{(1)} \cdots \mathcal{A}_{ih}^{(N_{\Delta t} - 2)} \mathcal{A}_{ih}^{(N_{\Delta t} - 1)})$
 $(\mathcal{A}_{ih}^{(0)} \mathcal{A}_{ih}^{(1)} \cdots \mathcal{A}_{ih}^{(\Delta t - 2)} \mathcal{A}_{ih}^{(N_{\Delta t} - 1)})$
 $(\mathcal{A}_{ih}^{(0)} \mathcal{A}_{ih}^{(1)} \cdots \mathcal{A}_{ih}^{(0)} \mathcal{A}_{ih}^{(1)} \mathcal{A}_{ih}^{(2)})$
 $(\mathcal{A}_{ih}^{(0)} \mathcal{A}_{ih}^{(1)} \cdots \mathcal{A}_{ih}^{(0)} \mathcal{A}_{ih}^{(1)} \mathcal{A}_{ih}^{(2)})$
 $\mathcal{A}_{ih}^{(0)} \alpha^{(\ell)} = \mathcal{F}^{(\ell)} - \sum_{q=\ell+1}^{N_{\Delta t}} \mathcal{A}^{(q-\ell)} \alpha^{(q)}, \quad \ell = 1, \cdots, N_{\Delta t}$

• numerical quadrature rule for evaluation of inverse Fourier transform: Matlab adaptive quadrature

numerical quadrature rule for evaluation of integrals:

Gauss-Legendre quadrature rules

Numerical example: Heston model

L.Feng-V.Linetsky (2008)

$$\begin{split} E &= 100 \text{ exercise price} \\ r &= 0.05 \text{ interest rate} \\ \delta &= 0.02 \text{ asset payout ratio} \\ \rho &= -0.5 \text{ correlation between } S \text{ and } v \\ \eta &= 0.1 \text{ volatility of volatility} \\ \lambda &= 4 \text{ speed of mean reversion} \\ \bar{v} &= 0.04 \text{ long-run variance} \end{split}$$

L = 110 barrier

time discretization

 $V(150, v^*, 0)$

	CAR	

e^{x^*} =	= S*	current	underlyin	ıg asset	value
$v^* =$	0.01	current	variance		
T =	1 ma	aturity			

SABO

$N_{\Delta t} = N_{\Delta v}$	$V(S^*,v^*,0)$	CPU time
3	50.96	2·10⁺² s
6	50.98	9·10⁺² s
9	51.02	2·10 ⁺³ s
12	51.01	2·10 ⁺⁴ s
15	51.01	4·10 ⁺⁴ s

sampling

		1								1
_		$M = 10^4$			$M = 10^{6}$			$M = 10^{8}$		
	$N_{\Delta t} = 100$	51.49	[50.95 , 52.02]	4·10 ⁻¹	51.24	[51.18 , 51.29]	4·10 ⁺¹	51.25	[51.25 , 51.26]	4·10 ⁺³
	$2 N_{\Delta t}$	51.24	[50.71 , 51.78]	6·10 ⁻¹	51.19	[51.14 , 51.25]	6·10 ⁺¹	51.19	[51.18 , 51.19]	7·10 ⁺³
	$4 N_{\Delta t}$	51.33	[50.79 , 51.88]	1.10+0	51.16	[51.10 , 51.21]	1.10+2	51.14	[51.13 , 51.15]	1.10+4
	$8 N_{\Delta t}$	51.35	[50.80 , 51.89]	2·10 ⁺⁰	51.13	[51.08 , 51.18]	2·10 ⁺²	51.11	[51.10 , 51.11]	2.10+4
	$16 N_{\Delta t}$	51.41	[50.88 , 51.95]	4·10 ⁺⁰	51.11	[51.05 , 51.16]	3·10 ⁺²	51.09	[51.08,51.09]	5.10+4
	$32 N_{\Delta t}$	50.97	[50.42 , 51.52]	8·10 ⁺⁰	51.08	[51.02 , 51.13]	1.10+3	51.07	[51.06,51.07]	7.10+4

Numerical example: Heston model

$V(115,v^st,0)$

SABO	$N_{\Delta t} = N_{\Delta v}$	$V(S^*, v^*, 0)$
	3	8.04
	6	8.06
	9	8.31
	12	8.29
	15	8.30

BEM, S			
pre- and pos	tprocessing		р
$N_{\Delta t} = N_{\Delta v}$	Times		$N_{\Delta t} =$
3	1.5E+02 s		3
6	7.5E+02 s		6
9	3.4E+03 s		9
12	3.7E + 03 s		12
15	6.2E+03 s		15

CPU time

postprocessing					
$N_{\Delta t} = N_{\Delta v}$	Times				
3	3.8E+01 s				
6	1.4E+02 s				
9	3.1E+02 s				
12	3.9E+02 s				
15	6.1E + 02 s				

MONTE CARLO

sampling

		$M = 10^4$		$M = 10^{6}$			$M = 10^{8}$			
c	$N_{\Delta t} = 100$	9.86	[9.51,10.21]	4·10 ⁻¹	9.72	[9.69,9.76]	4·10 ⁺¹	9.74	[9.73,9.74]	4·10 ⁺³
atio	$2 N_{\Delta t}$	9.22	[8.88,9.57]	7·10 ⁻¹	9.33	[9.30,9.37]	7·10 ⁺¹	9.33	[9.32,9.33]	6·10 ⁺³
etiz	$4 N_{\Delta t}$	8.99	[8.64,9.33]	1·10 ⁺⁰	9.04	[9.00,9.07]	1·10 ⁺²	9.03	[9.03,9.04]	1.10+4
liscr	$8 N_{\Delta t}$	8.81	[8.46,9.15]	2·10 ⁺⁰	8.82	[8.79,8.86]	2·10 ⁺²	8.83	[8.83, 8.83]	2·10 ⁺⁴
ue c	$16 N_{\Delta t}$	8.54	[8.20,8.88]	4·10 ⁺⁰	8.68	[8.65,8.71]	4·10 ⁺²	8.68	[8.68, 8.68]	4·10 ⁺⁴
tin	$32 N_{\Delta t}$				8.58	[8.54,8.61]	8·10 ⁺²			
Ĺ	$64 N_{\Delta t}$				8.53	[8.49,8.56]	2·10 ⁺³			
	$128 N_{\Delta t}$				8.50	[8.46,8.53]	3·10 ⁺³			
	$256 N_{\Delta t}$				8.43	[8.40,8.47]	7·10 ⁺³			
	$512 N_{\Delta t}$				8.39	[8.36,8.43]	1.10+4			

Numerical example: Heston model

References

Semi-Analytical method for the pricing of Barrier Options:

• A boundary element approach to barrier option pricing in **Black–Scholes framework**

International Journal of Computer Mathematics, 2016

- Fast numerical pricing of barrier options under stochastic volatility and jumps
 SIAM Journal on Applied Mathematics, 2016
- Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab codes) submitted to CAIM

Perspective

- Extension to Asian barrier options with geometric mean
 - ... with arithmetic mean

Thank you for the attention!

C. Guardasoni, S. Sanfelici University of Parma, Italy

Kolmogorov-Fokker-Planck Equations: theoretical issues and applications

April 10 - 11, 2017 Modena